mirror of
https://github.com/mirror/tinycc.git
synced 2024-12-26 03:50:07 +08:00
0b0e64c2c9
A pointer is 64 bit as well, so it needs a full register for register operands.
1668 lines
49 KiB
C
1668 lines
49 KiB
C
/*
|
|
* i386 specific functions for TCC assembler
|
|
*
|
|
* Copyright (c) 2001, 2002 Fabrice Bellard
|
|
* Copyright (c) 2009 Frédéric Feret (x86_64 support)
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#include "tcc.h"
|
|
|
|
/* #define NB_ASM_REGS 8 */
|
|
#define MAX_OPERANDS 3
|
|
#define NB_SAVED_REGS 3
|
|
|
|
#define TOK_ASM_first TOK_ASM_clc
|
|
#define TOK_ASM_last TOK_ASM_emms
|
|
#define TOK_ASM_alllast TOK_ASM_subps
|
|
|
|
#define OPC_B 0x01 /* only used with OPC_WL */
|
|
#define OPC_WL 0x02 /* accepts w, l or no suffix */
|
|
#define OPC_BWL (OPC_B | OPC_WL) /* accepts b, w, l or no suffix */
|
|
#define OPC_REG 0x04 /* register is added to opcode */
|
|
#define OPC_MODRM 0x08 /* modrm encoding */
|
|
|
|
#define OPCT_MASK 0x70
|
|
#define OPC_FWAIT 0x10 /* add fwait opcode */
|
|
#define OPC_SHIFT 0x20 /* shift opcodes */
|
|
#define OPC_ARITH 0x30 /* arithmetic opcodes */
|
|
#define OPC_FARITH 0x40 /* FPU arithmetic opcodes */
|
|
#define OPC_TEST 0x50 /* test opcodes */
|
|
#define OPCT_IS(v,i) (((v) & OPCT_MASK) == (i))
|
|
|
|
#define OPC_0F 0x100 /* Is secondary map (0x0f prefix) */
|
|
#ifdef TCC_TARGET_X86_64
|
|
# define OPC_WLQ 0x1000 /* accepts w, l, q or no suffix */
|
|
# define OPC_BWLQ (OPC_B | OPC_WLQ) /* accepts b, w, l, q or no suffix */
|
|
# define OPC_WLX OPC_WLQ
|
|
# define OPC_BWLX OPC_BWLQ
|
|
#else
|
|
# define OPC_WLX OPC_WL
|
|
# define OPC_BWLX OPC_BWL
|
|
#endif
|
|
|
|
#define OPC_GROUP_SHIFT 13
|
|
|
|
/* in order to compress the operand type, we use specific operands and
|
|
we or only with EA */
|
|
enum {
|
|
OPT_REG8=0, /* warning: value is hardcoded from TOK_ASM_xxx */
|
|
OPT_REG16, /* warning: value is hardcoded from TOK_ASM_xxx */
|
|
OPT_REG32, /* warning: value is hardcoded from TOK_ASM_xxx */
|
|
#ifdef TCC_TARGET_X86_64
|
|
OPT_REG64, /* warning: value is hardcoded from TOK_ASM_xxx */
|
|
#endif
|
|
OPT_MMX, /* warning: value is hardcoded from TOK_ASM_xxx */
|
|
OPT_SSE, /* warning: value is hardcoded from TOK_ASM_xxx */
|
|
OPT_CR, /* warning: value is hardcoded from TOK_ASM_xxx */
|
|
OPT_TR, /* warning: value is hardcoded from TOK_ASM_xxx */
|
|
OPT_DB, /* warning: value is hardcoded from TOK_ASM_xxx */
|
|
OPT_SEG,
|
|
OPT_ST,
|
|
#ifdef TCC_TARGET_X86_64
|
|
OPT_REG8_LOW, /* %spl,%bpl,%sil,%dil, encoded like ah,ch,dh,bh, but
|
|
with REX prefix, not used in insn templates */
|
|
#endif
|
|
OPT_IM8,
|
|
OPT_IM8S,
|
|
OPT_IM16,
|
|
OPT_IM32,
|
|
#ifdef TCC_TARGET_X86_64
|
|
OPT_IM64,
|
|
#endif
|
|
OPT_EAX, /* %al, %ax, %eax or %rax register */
|
|
OPT_ST0, /* %st(0) register */
|
|
OPT_CL, /* %cl register */
|
|
OPT_DX, /* %dx register */
|
|
OPT_ADDR, /* OP_EA with only offset */
|
|
OPT_INDIR, /* *(expr) */
|
|
/* composite types */
|
|
OPT_COMPOSITE_FIRST,
|
|
OPT_IM, /* IM8 | IM16 | IM32 */
|
|
OPT_REG, /* REG8 | REG16 | REG32 | REG64 */
|
|
OPT_REGW, /* REG16 | REG32 | REG64 */
|
|
OPT_IMW, /* IM16 | IM32 */
|
|
OPT_MMXSSE, /* MMX | SSE */
|
|
OPT_DISP, /* Like OPT_ADDR, but emitted as displacement (for jumps) */
|
|
OPT_DISP8, /* Like OPT_ADDR, but only 8bit (short jumps) */
|
|
/* can be ored with any OPT_xxx */
|
|
OPT_EA = 0x80
|
|
};
|
|
|
|
#define OP_REG8 (1 << OPT_REG8)
|
|
#define OP_REG16 (1 << OPT_REG16)
|
|
#define OP_REG32 (1 << OPT_REG32)
|
|
#define OP_MMX (1 << OPT_MMX)
|
|
#define OP_SSE (1 << OPT_SSE)
|
|
#define OP_CR (1 << OPT_CR)
|
|
#define OP_TR (1 << OPT_TR)
|
|
#define OP_DB (1 << OPT_DB)
|
|
#define OP_SEG (1 << OPT_SEG)
|
|
#define OP_ST (1 << OPT_ST)
|
|
#define OP_IM8 (1 << OPT_IM8)
|
|
#define OP_IM8S (1 << OPT_IM8S)
|
|
#define OP_IM16 (1 << OPT_IM16)
|
|
#define OP_IM32 (1 << OPT_IM32)
|
|
#define OP_EAX (1 << OPT_EAX)
|
|
#define OP_ST0 (1 << OPT_ST0)
|
|
#define OP_CL (1 << OPT_CL)
|
|
#define OP_DX (1 << OPT_DX)
|
|
#define OP_ADDR (1 << OPT_ADDR)
|
|
#define OP_INDIR (1 << OPT_INDIR)
|
|
#ifdef TCC_TARGET_X86_64
|
|
# define OP_REG64 (1 << OPT_REG64)
|
|
# define OP_REG8_LOW (1 << OPT_REG8_LOW)
|
|
# define OP_IM64 (1 << OPT_IM64)
|
|
# define OP_EA32 (OP_EA << 1)
|
|
#else
|
|
# define OP_REG64 0
|
|
# define OP_REG8_LOW 0
|
|
# define OP_IM64 0
|
|
# define OP_EA32 0
|
|
#endif
|
|
|
|
#define OP_EA 0x40000000
|
|
#define OP_REG (OP_REG8 | OP_REG16 | OP_REG32 | OP_REG64)
|
|
|
|
#ifdef TCC_TARGET_X86_64
|
|
# define TREG_XAX TREG_RAX
|
|
# define TREG_XCX TREG_RCX
|
|
# define TREG_XDX TREG_RDX
|
|
#else
|
|
# define TREG_XAX TREG_EAX
|
|
# define TREG_XCX TREG_ECX
|
|
# define TREG_XDX TREG_EDX
|
|
#endif
|
|
|
|
typedef struct ASMInstr {
|
|
uint16_t sym;
|
|
uint16_t opcode;
|
|
uint16_t instr_type;
|
|
uint8_t nb_ops;
|
|
uint8_t op_type[MAX_OPERANDS]; /* see OP_xxx */
|
|
} ASMInstr;
|
|
|
|
typedef struct Operand {
|
|
uint32_t type;
|
|
int8_t reg; /* register, -1 if none */
|
|
int8_t reg2; /* second register, -1 if none */
|
|
uint8_t shift;
|
|
ExprValue e;
|
|
} Operand;
|
|
|
|
static const uint8_t reg_to_size[9] = {
|
|
/*
|
|
[OP_REG8] = 0,
|
|
[OP_REG16] = 1,
|
|
[OP_REG32] = 2,
|
|
#ifdef TCC_TARGET_X86_64
|
|
[OP_REG64] = 3,
|
|
#endif
|
|
*/
|
|
0, 0, 1, 0, 2, 0, 0, 0, 3
|
|
};
|
|
|
|
#define NB_TEST_OPCODES 30
|
|
|
|
static const uint8_t test_bits[NB_TEST_OPCODES] = {
|
|
0x00, /* o */
|
|
0x01, /* no */
|
|
0x02, /* b */
|
|
0x02, /* c */
|
|
0x02, /* nae */
|
|
0x03, /* nb */
|
|
0x03, /* nc */
|
|
0x03, /* ae */
|
|
0x04, /* e */
|
|
0x04, /* z */
|
|
0x05, /* ne */
|
|
0x05, /* nz */
|
|
0x06, /* be */
|
|
0x06, /* na */
|
|
0x07, /* nbe */
|
|
0x07, /* a */
|
|
0x08, /* s */
|
|
0x09, /* ns */
|
|
0x0a, /* p */
|
|
0x0a, /* pe */
|
|
0x0b, /* np */
|
|
0x0b, /* po */
|
|
0x0c, /* l */
|
|
0x0c, /* nge */
|
|
0x0d, /* nl */
|
|
0x0d, /* ge */
|
|
0x0e, /* le */
|
|
0x0e, /* ng */
|
|
0x0f, /* nle */
|
|
0x0f, /* g */
|
|
};
|
|
|
|
static const uint8_t segment_prefixes[] = {
|
|
0x26, /* es */
|
|
0x2e, /* cs */
|
|
0x36, /* ss */
|
|
0x3e, /* ds */
|
|
0x64, /* fs */
|
|
0x65 /* gs */
|
|
};
|
|
|
|
static const ASMInstr asm_instrs[] = {
|
|
#define ALT(x) x
|
|
/* This removes a 0x0f in the second byte */
|
|
#define O(o) ((((o) & 0xff00) == 0x0f00) ? ((((o) >> 8) & ~0xff) | ((o) & 0xff)) : (o))
|
|
/* This constructs instr_type from opcode, type and group. */
|
|
#define T(o,i,g) ((i) | ((g) << OPC_GROUP_SHIFT) | ((((o) & 0xff00) == 0x0f00) ? OPC_0F : 0))
|
|
#define DEF_ASM_OP0(name, opcode)
|
|
#define DEF_ASM_OP0L(name, opcode, group, instr_type) { TOK_ASM_ ## name, O(opcode), T(opcode, instr_type, group), 0 },
|
|
#define DEF_ASM_OP1(name, opcode, group, instr_type, op0) { TOK_ASM_ ## name, O(opcode), T(opcode, instr_type, group), 1, { op0 }},
|
|
#define DEF_ASM_OP2(name, opcode, group, instr_type, op0, op1) { TOK_ASM_ ## name, O(opcode), T(opcode, instr_type, group), 2, { op0, op1 }},
|
|
#define DEF_ASM_OP3(name, opcode, group, instr_type, op0, op1, op2) { TOK_ASM_ ## name, O(opcode), T(opcode, instr_type, group), 3, { op0, op1, op2 }},
|
|
#ifdef TCC_TARGET_X86_64
|
|
# include "x86_64-asm.h"
|
|
#else
|
|
# include "i386-asm.h"
|
|
#endif
|
|
/* last operation */
|
|
{ 0, },
|
|
};
|
|
|
|
static const uint16_t op0_codes[] = {
|
|
#define ALT(x)
|
|
#define DEF_ASM_OP0(x, opcode) opcode,
|
|
#define DEF_ASM_OP0L(name, opcode, group, instr_type)
|
|
#define DEF_ASM_OP1(name, opcode, group, instr_type, op0)
|
|
#define DEF_ASM_OP2(name, opcode, group, instr_type, op0, op1)
|
|
#define DEF_ASM_OP3(name, opcode, group, instr_type, op0, op1, op2)
|
|
#ifdef TCC_TARGET_X86_64
|
|
# include "x86_64-asm.h"
|
|
#else
|
|
# include "i386-asm.h"
|
|
#endif
|
|
};
|
|
|
|
static inline int get_reg_shift(TCCState *s1)
|
|
{
|
|
int shift, v;
|
|
v = asm_int_expr(s1);
|
|
switch(v) {
|
|
case 1:
|
|
shift = 0;
|
|
break;
|
|
case 2:
|
|
shift = 1;
|
|
break;
|
|
case 4:
|
|
shift = 2;
|
|
break;
|
|
case 8:
|
|
shift = 3;
|
|
break;
|
|
default:
|
|
expect("1, 2, 4 or 8 constant");
|
|
shift = 0;
|
|
break;
|
|
}
|
|
return shift;
|
|
}
|
|
|
|
#ifdef TCC_TARGET_X86_64
|
|
static int asm_parse_numeric_reg(int *type)
|
|
{
|
|
int reg = -1;
|
|
if (tok >= TOK_IDENT && tok < tok_ident) {
|
|
const char *s = table_ident[tok - TOK_IDENT]->str;
|
|
char c;
|
|
*type = OP_REG64;
|
|
if (*s == 'c') {
|
|
s++;
|
|
*type = OP_CR;
|
|
}
|
|
if (*s++ != 'r')
|
|
return -1;
|
|
/* Don't allow leading '0'. */
|
|
if ((c = *s++) >= '1' && c <= '9')
|
|
reg = c - '0';
|
|
else
|
|
return -1;
|
|
if ((c = *s) >= '0' && c <= '5')
|
|
s++, reg = reg * 10 + c - '0';
|
|
if (reg > 15)
|
|
return -1;
|
|
if ((c = *s) == 0)
|
|
;
|
|
else if (*type != OP_REG64)
|
|
return -1;
|
|
else if (c == 'b' && !s[1])
|
|
*type = OP_REG8;
|
|
else if (c == 'w' && !s[1])
|
|
*type = OP_REG16;
|
|
else if (c == 'd' && !s[1])
|
|
*type = OP_REG32;
|
|
else
|
|
return -1;
|
|
}
|
|
return reg;
|
|
}
|
|
#endif
|
|
|
|
static int asm_parse_reg(int *type)
|
|
{
|
|
int reg = 0;
|
|
*type = 0;
|
|
if (tok != '%')
|
|
goto error_32;
|
|
next();
|
|
if (tok >= TOK_ASM_eax && tok <= TOK_ASM_edi) {
|
|
reg = tok - TOK_ASM_eax;
|
|
*type = OP_REG32;
|
|
#ifdef TCC_TARGET_X86_64
|
|
} else if (tok >= TOK_ASM_rax && tok <= TOK_ASM_rdi) {
|
|
reg = tok - TOK_ASM_rax;
|
|
*type = OP_REG64;
|
|
} else if (tok == TOK_ASM_rip) {
|
|
reg = -2; /* Probably should use different escape code. */
|
|
*type = OP_REG64;
|
|
} else if ((reg = asm_parse_numeric_reg(type)) >= 0
|
|
&& (*type == OP_REG32 || *type == OP_REG64)) {
|
|
;
|
|
#endif
|
|
} else {
|
|
error_32:
|
|
expect("register");
|
|
}
|
|
next();
|
|
return reg;
|
|
}
|
|
|
|
static void parse_operand(TCCState *s1, Operand *op)
|
|
{
|
|
ExprValue e;
|
|
int reg, indir;
|
|
const char *p;
|
|
|
|
indir = 0;
|
|
if (tok == '*') {
|
|
next();
|
|
indir = OP_INDIR;
|
|
}
|
|
|
|
if (tok == '%') {
|
|
next();
|
|
if (tok >= TOK_ASM_al && tok <= TOK_ASM_db7) {
|
|
reg = tok - TOK_ASM_al;
|
|
op->type = 1 << (reg >> 3); /* WARNING: do not change constant order */
|
|
op->reg = reg & 7;
|
|
if ((op->type & OP_REG) && op->reg == TREG_XAX)
|
|
op->type |= OP_EAX;
|
|
else if (op->type == OP_REG8 && op->reg == TREG_XCX)
|
|
op->type |= OP_CL;
|
|
else if (op->type == OP_REG16 && op->reg == TREG_XDX)
|
|
op->type |= OP_DX;
|
|
} else if (tok >= TOK_ASM_dr0 && tok <= TOK_ASM_dr7) {
|
|
op->type = OP_DB;
|
|
op->reg = tok - TOK_ASM_dr0;
|
|
} else if (tok >= TOK_ASM_es && tok <= TOK_ASM_gs) {
|
|
op->type = OP_SEG;
|
|
op->reg = tok - TOK_ASM_es;
|
|
} else if (tok == TOK_ASM_st) {
|
|
op->type = OP_ST;
|
|
op->reg = 0;
|
|
next();
|
|
if (tok == '(') {
|
|
next();
|
|
if (tok != TOK_PPNUM)
|
|
goto reg_error;
|
|
p = tokc.str.data;
|
|
reg = p[0] - '0';
|
|
if ((unsigned)reg >= 8 || p[1] != '\0')
|
|
goto reg_error;
|
|
op->reg = reg;
|
|
next();
|
|
skip(')');
|
|
}
|
|
if (op->reg == 0)
|
|
op->type |= OP_ST0;
|
|
goto no_skip;
|
|
#ifdef TCC_TARGET_X86_64
|
|
} else if (tok >= TOK_ASM_spl && tok <= TOK_ASM_dil) {
|
|
op->type = OP_REG8 | OP_REG8_LOW;
|
|
op->reg = 4 + tok - TOK_ASM_spl;
|
|
} else if ((op->reg = asm_parse_numeric_reg(&op->type)) >= 0) {
|
|
;
|
|
#endif
|
|
} else {
|
|
reg_error:
|
|
tcc_error("unknown register %%%s", get_tok_str(tok, &tokc));
|
|
}
|
|
next();
|
|
no_skip: ;
|
|
} else if (tok == '$') {
|
|
/* constant value */
|
|
next();
|
|
asm_expr(s1, &e);
|
|
op->type = OP_IM32;
|
|
op->e = e;
|
|
if (!op->e.sym) {
|
|
if (op->e.v == (uint8_t)op->e.v)
|
|
op->type |= OP_IM8;
|
|
if (op->e.v == (int8_t)op->e.v)
|
|
op->type |= OP_IM8S;
|
|
if (op->e.v == (uint16_t)op->e.v)
|
|
op->type |= OP_IM16;
|
|
#ifdef TCC_TARGET_X86_64
|
|
if (op->e.v != (int32_t)op->e.v && op->e.v != (uint32_t)op->e.v)
|
|
op->type = OP_IM64;
|
|
#endif
|
|
}
|
|
} else {
|
|
/* address(reg,reg2,shift) with all variants */
|
|
op->type = OP_EA;
|
|
op->reg = -1;
|
|
op->reg2 = -1;
|
|
op->shift = 0;
|
|
if (tok != '(') {
|
|
asm_expr(s1, &e);
|
|
op->e = e;
|
|
} else {
|
|
next();
|
|
if (tok == '%') {
|
|
unget_tok('(');
|
|
op->e.v = 0;
|
|
op->e.sym = NULL;
|
|
} else {
|
|
/* bracketed offset expression */
|
|
asm_expr(s1, &e);
|
|
if (tok != ')')
|
|
expect(")");
|
|
next();
|
|
op->e.v = e.v;
|
|
op->e.sym = e.sym;
|
|
}
|
|
op->e.pcrel = 0;
|
|
}
|
|
if (tok == '(') {
|
|
int type = 0;
|
|
next();
|
|
if (tok != ',') {
|
|
op->reg = asm_parse_reg(&type);
|
|
}
|
|
if (tok == ',') {
|
|
next();
|
|
if (tok != ',') {
|
|
op->reg2 = asm_parse_reg(&type);
|
|
}
|
|
if (tok == ',') {
|
|
next();
|
|
op->shift = get_reg_shift(s1);
|
|
}
|
|
}
|
|
if (type & OP_REG32)
|
|
op->type |= OP_EA32;
|
|
skip(')');
|
|
}
|
|
if (op->reg == -1 && op->reg2 == -1)
|
|
op->type |= OP_ADDR;
|
|
}
|
|
op->type |= indir;
|
|
}
|
|
|
|
/* XXX: unify with C code output ? */
|
|
ST_FUNC void gen_expr32(ExprValue *pe)
|
|
{
|
|
if (pe->pcrel)
|
|
/* If PC-relative, always set VT_SYM, even without symbol,
|
|
so as to force a relocation to be emitted. */
|
|
gen_addrpc32(VT_SYM, pe->sym, pe->v);
|
|
else
|
|
gen_addr32(pe->sym ? VT_SYM : 0, pe->sym, pe->v);
|
|
}
|
|
|
|
#ifdef TCC_TARGET_X86_64
|
|
ST_FUNC void gen_expr64(ExprValue *pe)
|
|
{
|
|
gen_addr64(pe->sym ? VT_SYM : 0, pe->sym, pe->v);
|
|
}
|
|
#endif
|
|
|
|
/* XXX: unify with C code output ? */
|
|
static void gen_disp32(ExprValue *pe)
|
|
{
|
|
Sym *sym = pe->sym;
|
|
if (sym && sym->r == cur_text_section->sh_num) {
|
|
/* same section: we can output an absolute value. Note
|
|
that the TCC compiler behaves differently here because
|
|
it always outputs a relocation to ease (future) code
|
|
elimination in the linker */
|
|
gen_le32(pe->v + sym->jnext - ind - 4);
|
|
} else {
|
|
if (sym && sym->type.t == VT_VOID) {
|
|
sym->type.t = VT_FUNC;
|
|
sym->type.ref = NULL;
|
|
}
|
|
gen_addrpc32(VT_SYM, sym, pe->v);
|
|
}
|
|
}
|
|
|
|
/* generate the modrm operand */
|
|
static inline int asm_modrm(int reg, Operand *op)
|
|
{
|
|
int mod, reg1, reg2, sib_reg1;
|
|
|
|
if (op->type & (OP_REG | OP_MMX | OP_SSE)) {
|
|
g(0xc0 + (reg << 3) + op->reg);
|
|
} else if (op->reg == -1 && op->reg2 == -1) {
|
|
/* displacement only */
|
|
#ifdef TCC_TARGET_X86_64
|
|
g(0x04 + (reg << 3));
|
|
g(0x25);
|
|
#else
|
|
g(0x05 + (reg << 3));
|
|
#endif
|
|
gen_expr32(&op->e);
|
|
#ifdef TCC_TARGET_X86_64
|
|
} else if (op->reg == -2) {
|
|
ExprValue *pe = &op->e;
|
|
g(0x05 + (reg << 3));
|
|
gen_addrpc32(pe->sym ? VT_SYM : 0, pe->sym, pe->v);
|
|
return ind;
|
|
#endif
|
|
} else {
|
|
sib_reg1 = op->reg;
|
|
/* fist compute displacement encoding */
|
|
if (sib_reg1 == -1) {
|
|
sib_reg1 = 5;
|
|
mod = 0x00;
|
|
} else if (op->e.v == 0 && !op->e.sym && op->reg != 5) {
|
|
mod = 0x00;
|
|
} else if (op->e.v == (int8_t)op->e.v && !op->e.sym) {
|
|
mod = 0x40;
|
|
} else {
|
|
mod = 0x80;
|
|
}
|
|
/* compute if sib byte needed */
|
|
reg1 = op->reg;
|
|
if (op->reg2 != -1)
|
|
reg1 = 4;
|
|
g(mod + (reg << 3) + reg1);
|
|
if (reg1 == 4) {
|
|
/* add sib byte */
|
|
reg2 = op->reg2;
|
|
if (reg2 == -1)
|
|
reg2 = 4; /* indicate no index */
|
|
g((op->shift << 6) + (reg2 << 3) + sib_reg1);
|
|
}
|
|
/* add offset */
|
|
if (mod == 0x40) {
|
|
g(op->e.v);
|
|
} else if (mod == 0x80 || op->reg == -1) {
|
|
gen_expr32(&op->e);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifdef TCC_TARGET_X86_64
|
|
#define REX_W 0x48
|
|
#define REX_R 0x44
|
|
#define REX_X 0x42
|
|
#define REX_B 0x41
|
|
|
|
static void asm_rex(int width64, Operand *ops, int nb_ops, int *op_type,
|
|
int regi, int rmi)
|
|
{
|
|
unsigned char rex = width64 ? 0x48 : 0;
|
|
int saw_high_8bit = 0;
|
|
int i;
|
|
if (rmi == -1) {
|
|
/* No mod/rm byte, but we might have a register op nevertheless
|
|
(we will add it to the opcode later). */
|
|
for(i = 0; i < nb_ops; i++) {
|
|
if (op_type[i] & (OP_REG | OP_ST)) {
|
|
if (ops[i].reg >= 8) {
|
|
rex |= REX_B;
|
|
ops[i].reg -= 8;
|
|
} else if (ops[i].type & OP_REG8_LOW)
|
|
rex |= 0x40;
|
|
else if (ops[i].type & OP_REG8 && ops[i].reg >= 4)
|
|
/* An 8 bit reg >= 4 without REG8 is ah/ch/dh/bh */
|
|
saw_high_8bit = ops[i].reg;
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
if (regi != -1) {
|
|
if (ops[regi].reg >= 8) {
|
|
rex |= REX_R;
|
|
ops[regi].reg -= 8;
|
|
} else if (ops[regi].type & OP_REG8_LOW)
|
|
rex |= 0x40;
|
|
else if (ops[regi].type & OP_REG8 && ops[regi].reg >= 4)
|
|
/* An 8 bit reg >= 4 without REG8 is ah/ch/dh/bh */
|
|
saw_high_8bit = ops[regi].reg;
|
|
}
|
|
if (ops[rmi].type & (OP_REG | OP_MMX | OP_SSE | OP_CR | OP_EA)) {
|
|
if (ops[rmi].reg >= 8) {
|
|
rex |= REX_B;
|
|
ops[rmi].reg -= 8;
|
|
} else if (ops[rmi].type & OP_REG8_LOW)
|
|
rex |= 0x40;
|
|
else if (ops[rmi].type & OP_REG8 && ops[rmi].reg >= 4)
|
|
/* An 8 bit reg >= 4 without REG8 is ah/ch/dh/bh */
|
|
saw_high_8bit = ops[rmi].reg;
|
|
}
|
|
if (ops[rmi].type & OP_EA && ops[rmi].reg2 >= 8) {
|
|
rex |= REX_X;
|
|
ops[rmi].reg2 -= 8;
|
|
}
|
|
}
|
|
if (rex) {
|
|
if (saw_high_8bit)
|
|
tcc_error("can't encode register %%%ch when REX prefix is required",
|
|
"acdb"[saw_high_8bit-4]);
|
|
g(rex);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void maybe_print_stats (void)
|
|
{
|
|
static int already = 1;
|
|
if (!already)
|
|
/* print stats about opcodes */
|
|
{
|
|
const struct ASMInstr *pa;
|
|
int freq[4];
|
|
int op_vals[500];
|
|
int nb_op_vals, i, j;
|
|
|
|
already = 1;
|
|
nb_op_vals = 0;
|
|
memset(freq, 0, sizeof(freq));
|
|
for(pa = asm_instrs; pa->sym != 0; pa++) {
|
|
freq[pa->nb_ops]++;
|
|
//for(i=0;i<pa->nb_ops;i++) {
|
|
for(j=0;j<nb_op_vals;j++) {
|
|
//if (pa->op_type[i] == op_vals[j])
|
|
if (pa->instr_type == op_vals[j])
|
|
goto found;
|
|
}
|
|
//op_vals[nb_op_vals++] = pa->op_type[i];
|
|
op_vals[nb_op_vals++] = pa->instr_type;
|
|
found: ;
|
|
//}
|
|
}
|
|
for(i=0;i<nb_op_vals;i++) {
|
|
int v = op_vals[i];
|
|
//if ((v & (v - 1)) != 0)
|
|
printf("%3d: %08x\n", i, v);
|
|
}
|
|
printf("size=%d nb=%d f0=%d f1=%d f2=%d f3=%d\n",
|
|
(int)sizeof(asm_instrs),
|
|
(int)sizeof(asm_instrs) / (int)sizeof(ASMInstr),
|
|
freq[0], freq[1], freq[2], freq[3]);
|
|
}
|
|
}
|
|
|
|
ST_FUNC void asm_opcode(TCCState *s1, int opcode)
|
|
{
|
|
const ASMInstr *pa;
|
|
int i, modrm_index, modreg_index, reg, v, op1, seg_prefix, pc;
|
|
int nb_ops, s;
|
|
Operand ops[MAX_OPERANDS], *pop;
|
|
int op_type[3]; /* decoded op type */
|
|
int alltypes; /* OR of all operand types */
|
|
int autosize;
|
|
int p66;
|
|
#ifdef TCC_TARGET_X86_64
|
|
int rex64;
|
|
#endif
|
|
|
|
maybe_print_stats();
|
|
/* force synthetic ';' after prefix instruction, so we can handle */
|
|
/* one-line things like "rep stosb" instead of only "rep\nstosb" */
|
|
if (opcode >= TOK_ASM_wait && opcode <= TOK_ASM_repnz)
|
|
unget_tok(';');
|
|
|
|
/* get operands */
|
|
pop = ops;
|
|
nb_ops = 0;
|
|
seg_prefix = 0;
|
|
alltypes = 0;
|
|
for(;;) {
|
|
if (tok == ';' || tok == TOK_LINEFEED)
|
|
break;
|
|
if (nb_ops >= MAX_OPERANDS) {
|
|
tcc_error("incorrect number of operands");
|
|
}
|
|
parse_operand(s1, pop);
|
|
if (tok == ':') {
|
|
if (pop->type != OP_SEG || seg_prefix)
|
|
tcc_error("incorrect prefix");
|
|
seg_prefix = segment_prefixes[pop->reg];
|
|
next();
|
|
parse_operand(s1, pop);
|
|
if (!(pop->type & OP_EA)) {
|
|
tcc_error("segment prefix must be followed by memory reference");
|
|
}
|
|
}
|
|
pop++;
|
|
nb_ops++;
|
|
if (tok != ',')
|
|
break;
|
|
next();
|
|
}
|
|
|
|
s = 0; /* avoid warning */
|
|
|
|
/* optimize matching by using a lookup table (no hashing is needed
|
|
!) */
|
|
for(pa = asm_instrs; pa->sym != 0; pa++) {
|
|
int it = pa->instr_type & OPCT_MASK;
|
|
s = 0;
|
|
if (it == OPC_FARITH) {
|
|
v = opcode - pa->sym;
|
|
if (!((unsigned)v < 8 * 6 && (v % 6) == 0))
|
|
continue;
|
|
} else if (it == OPC_ARITH) {
|
|
if (!(opcode >= pa->sym && opcode < pa->sym + 8*NBWLX))
|
|
continue;
|
|
s = (opcode - pa->sym) % NBWLX;
|
|
if ((pa->instr_type & OPC_BWLX) == OPC_WLX)
|
|
{
|
|
/* We need to reject the xxxb opcodes that we accepted above.
|
|
Note that pa->sym for WLX opcodes is the 'w' token,
|
|
to get the 'b' token subtract one. */
|
|
if (((opcode - pa->sym + 1) % NBWLX) == 0)
|
|
continue;
|
|
s++;
|
|
}
|
|
} else if (it == OPC_SHIFT) {
|
|
if (!(opcode >= pa->sym && opcode < pa->sym + 7*NBWLX))
|
|
continue;
|
|
s = (opcode - pa->sym) % NBWLX;
|
|
} else if (it == OPC_TEST) {
|
|
if (!(opcode >= pa->sym && opcode < pa->sym + NB_TEST_OPCODES))
|
|
continue;
|
|
/* cmovxx is a test opcode but accepts multiple sizes.
|
|
TCC doesn't accept the suffixed mnemonic, instead we
|
|
simply force size autodetection always. */
|
|
if (pa->instr_type & OPC_WLX)
|
|
s = NBWLX - 1;
|
|
} else if (pa->instr_type & OPC_B) {
|
|
#ifdef TCC_TARGET_X86_64
|
|
/* Some instructions don't have the full size but only
|
|
bwl form. insb e.g. */
|
|
if ((pa->instr_type & OPC_WLQ) != OPC_WLQ
|
|
&& !(opcode >= pa->sym && opcode < pa->sym + NBWLX-1))
|
|
continue;
|
|
#endif
|
|
if (!(opcode >= pa->sym && opcode < pa->sym + NBWLX))
|
|
continue;
|
|
s = opcode - pa->sym;
|
|
} else if (pa->instr_type & OPC_WLX) {
|
|
if (!(opcode >= pa->sym && opcode < pa->sym + NBWLX-1))
|
|
continue;
|
|
s = opcode - pa->sym + 1;
|
|
} else {
|
|
if (pa->sym != opcode)
|
|
continue;
|
|
}
|
|
if (pa->nb_ops != nb_ops)
|
|
continue;
|
|
#ifdef TCC_TARGET_X86_64
|
|
/* Special case for moves. Selecting the IM64->REG64 form
|
|
should only be done if we really have an >32bit imm64, and that
|
|
is hardcoded. Ignore it here. */
|
|
if (pa->opcode == 0xb0 && ops[0].type != OP_IM64
|
|
&& ops[1].type == OP_REG64
|
|
&& !(pa->instr_type & OPC_0F))
|
|
continue;
|
|
#endif
|
|
/* now decode and check each operand */
|
|
alltypes = 0;
|
|
for(i = 0; i < nb_ops; i++) {
|
|
int op1, op2;
|
|
op1 = pa->op_type[i];
|
|
op2 = op1 & 0x1f;
|
|
switch(op2) {
|
|
case OPT_IM:
|
|
v = OP_IM8 | OP_IM16 | OP_IM32;
|
|
break;
|
|
case OPT_REG:
|
|
v = OP_REG8 | OP_REG16 | OP_REG32 | OP_REG64;
|
|
break;
|
|
case OPT_REGW:
|
|
v = OP_REG16 | OP_REG32 | OP_REG64;
|
|
break;
|
|
case OPT_IMW:
|
|
v = OP_IM16 | OP_IM32;
|
|
break;
|
|
case OPT_MMXSSE:
|
|
v = OP_MMX | OP_SSE;
|
|
break;
|
|
case OPT_DISP:
|
|
case OPT_DISP8:
|
|
v = OP_ADDR;
|
|
break;
|
|
default:
|
|
v = 1 << op2;
|
|
break;
|
|
}
|
|
if (op1 & OPT_EA)
|
|
v |= OP_EA;
|
|
op_type[i] = v;
|
|
if ((ops[i].type & v) == 0)
|
|
goto next;
|
|
alltypes |= ops[i].type;
|
|
}
|
|
/* all is matching ! */
|
|
break;
|
|
next: ;
|
|
}
|
|
if (pa->sym == 0) {
|
|
if (opcode >= TOK_ASM_first && opcode <= TOK_ASM_last) {
|
|
int b;
|
|
b = op0_codes[opcode - TOK_ASM_first];
|
|
if (b & 0xff00)
|
|
g(b >> 8);
|
|
g(b);
|
|
return;
|
|
} else if (opcode <= TOK_ASM_alllast) {
|
|
tcc_error("bad operand with opcode '%s'",
|
|
get_tok_str(opcode, NULL));
|
|
} else {
|
|
tcc_error("unknown opcode '%s'",
|
|
get_tok_str(opcode, NULL));
|
|
}
|
|
}
|
|
/* if the size is unknown, then evaluate it (OPC_B or OPC_WL case) */
|
|
autosize = NBWLX-1;
|
|
#ifdef TCC_TARGET_X86_64
|
|
/* XXX the autosize should rather be zero, to not have to adjust this
|
|
all the time. */
|
|
if ((pa->instr_type & OPC_BWLQ) == OPC_B)
|
|
autosize = NBWLX-2;
|
|
#endif
|
|
if (s == autosize) {
|
|
/* Check for register operands providing hints about the size.
|
|
Start from the end, i.e. destination operands. This matters
|
|
only for opcodes accepting different sized registers, lar and lsl
|
|
are such opcodes. */
|
|
for(i = nb_ops - 1; s == autosize && i >= 0; i--) {
|
|
if ((ops[i].type & OP_REG) && !(op_type[i] & (OP_CL | OP_DX)))
|
|
s = reg_to_size[ops[i].type & OP_REG];
|
|
}
|
|
if (s == autosize) {
|
|
if ((opcode == TOK_ASM_push || opcode == TOK_ASM_pop) &&
|
|
(ops[0].type & (OP_SEG | OP_IM8S | OP_IM32)))
|
|
s = 2;
|
|
else if ((opcode == TOK_ASM_push || opcode == TOK_ASM_pop) &&
|
|
(ops[0].type & OP_EA))
|
|
s = NBWLX - 2;
|
|
else
|
|
tcc_error("cannot infer opcode suffix");
|
|
}
|
|
}
|
|
|
|
#ifdef TCC_TARGET_X86_64
|
|
/* Generate addr32 prefix if needed */
|
|
for(i = 0; i < nb_ops; i++) {
|
|
if (ops[i].type & OP_EA32) {
|
|
g(0x67);
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
/* generate data16 prefix if needed */
|
|
p66 = 0;
|
|
if (s == 1)
|
|
p66 = 1;
|
|
else {
|
|
/* accepting mmx+sse in all operands --> needs 0x66 to
|
|
switch to sse mode. Accepting only sse in an operand --> is
|
|
already SSE insn and needs 0x66/f2/f3 handling. */
|
|
for (i = 0; i < nb_ops; i++)
|
|
if ((op_type[i] & (OP_MMX | OP_SSE)) == (OP_MMX | OP_SSE)
|
|
&& ops[i].type & OP_SSE)
|
|
p66 = 1;
|
|
}
|
|
if (p66)
|
|
g(0x66);
|
|
#ifdef TCC_TARGET_X86_64
|
|
rex64 = 0;
|
|
if (s == 3 || (alltypes & OP_REG64)) {
|
|
/* generate REX prefix */
|
|
int default64 = 0;
|
|
for(i = 0; i < nb_ops; i++) {
|
|
if (op_type[i] == OP_REG64) {
|
|
/* If only 64bit regs are accepted in one operand
|
|
this is a default64 instruction without need for
|
|
REX prefixes. */
|
|
default64 = 1;
|
|
break;
|
|
}
|
|
}
|
|
/* XXX find better encoding for the default64 instructions. */
|
|
if (((opcode != TOK_ASM_push && opcode != TOK_ASM_pop
|
|
&& opcode != TOK_ASM_pushw && opcode != TOK_ASM_pushl
|
|
&& opcode != TOK_ASM_pushq && opcode != TOK_ASM_popw
|
|
&& opcode != TOK_ASM_popl && opcode != TOK_ASM_popq
|
|
&& opcode != TOK_ASM_call && opcode != TOK_ASM_jmp))
|
|
&& !default64)
|
|
rex64 = 1;
|
|
}
|
|
#endif
|
|
|
|
/* now generates the operation */
|
|
if (OPCT_IS(pa->instr_type, OPC_FWAIT))
|
|
g(0x9b);
|
|
if (seg_prefix)
|
|
g(seg_prefix);
|
|
|
|
v = pa->opcode;
|
|
if (pa->instr_type & OPC_0F)
|
|
v = ((v & ~0xff) << 8) | 0x0f00 | (v & 0xff);
|
|
if ((v == 0x69 || v == 0x6b) && nb_ops == 2) {
|
|
/* kludge for imul $im, %reg */
|
|
nb_ops = 3;
|
|
ops[2] = ops[1];
|
|
op_type[2] = op_type[1];
|
|
} else if (v == 0xcd && ops[0].e.v == 3 && !ops[0].e.sym) {
|
|
v--; /* int $3 case */
|
|
nb_ops = 0;
|
|
} else if ((v == 0x06 || v == 0x07)) {
|
|
if (ops[0].reg >= 4) {
|
|
/* push/pop %fs or %gs */
|
|
v = 0x0fa0 + (v - 0x06) + ((ops[0].reg - 4) << 3);
|
|
} else {
|
|
v += ops[0].reg << 3;
|
|
}
|
|
nb_ops = 0;
|
|
} else if (v <= 0x05) {
|
|
/* arith case */
|
|
v += ((opcode - TOK_ASM_addb) / NBWLX) << 3;
|
|
} else if ((pa->instr_type & (OPCT_MASK | OPC_MODRM)) == OPC_FARITH) {
|
|
/* fpu arith case */
|
|
v += ((opcode - pa->sym) / 6) << 3;
|
|
}
|
|
|
|
/* search which operand will be used for modrm */
|
|
modrm_index = -1;
|
|
modreg_index = -1;
|
|
if (pa->instr_type & OPC_MODRM) {
|
|
if (!nb_ops) {
|
|
/* A modrm opcode without operands is a special case (e.g. mfence).
|
|
It has a group and acts as if there's an register operand 0
|
|
(ax). */
|
|
i = 0;
|
|
ops[i].type = OP_REG;
|
|
ops[i].reg = 0;
|
|
goto modrm_found;
|
|
}
|
|
/* first look for an ea operand */
|
|
for(i = 0;i < nb_ops; i++) {
|
|
if (op_type[i] & OP_EA)
|
|
goto modrm_found;
|
|
}
|
|
/* then if not found, a register or indirection (shift instructions) */
|
|
for(i = 0;i < nb_ops; i++) {
|
|
if (op_type[i] & (OP_REG | OP_MMX | OP_SSE | OP_INDIR))
|
|
goto modrm_found;
|
|
}
|
|
#ifdef ASM_DEBUG
|
|
tcc_error("bad op table");
|
|
#endif
|
|
modrm_found:
|
|
modrm_index = i;
|
|
/* if a register is used in another operand then it is
|
|
used instead of group */
|
|
for(i = 0;i < nb_ops; i++) {
|
|
int t = op_type[i];
|
|
if (i != modrm_index &&
|
|
(t & (OP_REG | OP_MMX | OP_SSE | OP_CR | OP_TR | OP_DB | OP_SEG))) {
|
|
modreg_index = i;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
#ifdef TCC_TARGET_X86_64
|
|
asm_rex (rex64, ops, nb_ops, op_type, modreg_index, modrm_index);
|
|
#endif
|
|
|
|
if (pa->instr_type & OPC_REG) {
|
|
/* mov $im, %reg case */
|
|
if (v == 0xb0 && s >= 1)
|
|
v += 7;
|
|
for(i = 0; i < nb_ops; i++) {
|
|
if (op_type[i] & (OP_REG | OP_ST)) {
|
|
v += ops[i].reg;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (pa->instr_type & OPC_B)
|
|
v += s >= 1;
|
|
if (nb_ops == 1 && pa->op_type[0] == OPT_DISP8) {
|
|
Sym *sym;
|
|
int jmp_disp;
|
|
|
|
/* see if we can really generate the jump with a byte offset */
|
|
sym = ops[0].e.sym;
|
|
if (!sym)
|
|
goto no_short_jump;
|
|
if (sym->r != cur_text_section->sh_num)
|
|
goto no_short_jump;
|
|
jmp_disp = ops[0].e.v + sym->jnext - ind - 2 - (v >= 0xff);
|
|
if (jmp_disp == (int8_t)jmp_disp) {
|
|
/* OK to generate jump */
|
|
ops[0].e.sym = 0;
|
|
ops[0].e.v = jmp_disp;
|
|
op_type[0] = OP_IM8S;
|
|
} else {
|
|
no_short_jump:
|
|
/* long jump will be allowed. need to modify the
|
|
opcode slightly */
|
|
if (v == 0xeb) /* jmp */
|
|
v = 0xe9;
|
|
else if (v == 0x70) /* jcc */
|
|
v += 0x0f10;
|
|
else
|
|
tcc_error("invalid displacement");
|
|
}
|
|
}
|
|
if (OPCT_IS(pa->instr_type, OPC_TEST))
|
|
v += test_bits[opcode - pa->sym];
|
|
op1 = v >> 16;
|
|
if (op1)
|
|
g(op1);
|
|
op1 = (v >> 8) & 0xff;
|
|
if (op1)
|
|
g(op1);
|
|
g(v);
|
|
|
|
if (OPCT_IS(pa->instr_type, OPC_SHIFT)) {
|
|
reg = (opcode - pa->sym) / NBWLX;
|
|
if (reg == 6)
|
|
reg = 7;
|
|
} else if (OPCT_IS(pa->instr_type, OPC_ARITH)) {
|
|
reg = (opcode - pa->sym) / NBWLX;
|
|
} else if (OPCT_IS(pa->instr_type, OPC_FARITH)) {
|
|
reg = (opcode - pa->sym) / 6;
|
|
} else {
|
|
reg = (pa->instr_type >> OPC_GROUP_SHIFT) & 7;
|
|
}
|
|
|
|
pc = 0;
|
|
if (pa->instr_type & OPC_MODRM) {
|
|
/* if a register is used in another operand then it is
|
|
used instead of group */
|
|
if (modreg_index >= 0)
|
|
reg = ops[modreg_index].reg;
|
|
pc = asm_modrm(reg, &ops[modrm_index]);
|
|
}
|
|
|
|
/* emit constants */
|
|
#ifndef TCC_TARGET_X86_64
|
|
if (!(pa->instr_type & OPC_0F)
|
|
&& (pa->opcode == 0x9a || pa->opcode == 0xea)) {
|
|
/* ljmp or lcall kludge */
|
|
gen_expr32(&ops[1].e);
|
|
if (ops[0].e.sym)
|
|
tcc_error("cannot relocate");
|
|
gen_le16(ops[0].e.v);
|
|
return;
|
|
}
|
|
#endif
|
|
for(i = 0;i < nb_ops; i++) {
|
|
v = op_type[i];
|
|
if (v & (OP_IM8 | OP_IM16 | OP_IM32 | OP_IM64 | OP_IM8S | OP_ADDR)) {
|
|
/* if multiple sizes are given it means we must look
|
|
at the op size */
|
|
if ((v | OP_IM8 | OP_IM64) == (OP_IM8 | OP_IM16 | OP_IM32 | OP_IM64)) {
|
|
if (s == 0)
|
|
v = OP_IM8;
|
|
else if (s == 1)
|
|
v = OP_IM16;
|
|
else if (s == 2 || (v & OP_IM64) == 0)
|
|
v = OP_IM32;
|
|
else
|
|
v = OP_IM64;
|
|
}
|
|
|
|
if ((v & (OP_IM8 | OP_IM8S | OP_IM16)) && ops[i].e.sym)
|
|
tcc_error("cannot relocate");
|
|
|
|
if (v & (OP_IM8 | OP_IM8S)) {
|
|
g(ops[i].e.v);
|
|
} else if (v & OP_IM16) {
|
|
gen_le16(ops[i].e.v);
|
|
#ifdef TCC_TARGET_X86_64
|
|
} else if (v & OP_IM64) {
|
|
gen_expr64(&ops[i].e);
|
|
#endif
|
|
} else if (pa->op_type[i] == OPT_DISP || pa->op_type[i] == OPT_DISP8) {
|
|
gen_disp32(&ops[i].e);
|
|
} else {
|
|
gen_expr32(&ops[i].e);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* after immediate operands, adjust pc-relative address */
|
|
if (pc)
|
|
add32le(text_section->data + pc - 4, pc - ind);
|
|
}
|
|
|
|
/* return the constraint priority (we allocate first the lowest
|
|
numbered constraints) */
|
|
static inline int constraint_priority(const char *str)
|
|
{
|
|
int priority, c, pr;
|
|
|
|
/* we take the lowest priority */
|
|
priority = 0;
|
|
for(;;) {
|
|
c = *str;
|
|
if (c == '\0')
|
|
break;
|
|
str++;
|
|
switch(c) {
|
|
case 'A':
|
|
pr = 0;
|
|
break;
|
|
case 'a':
|
|
case 'b':
|
|
case 'c':
|
|
case 'd':
|
|
case 'S':
|
|
case 'D':
|
|
pr = 1;
|
|
break;
|
|
case 'q':
|
|
pr = 2;
|
|
break;
|
|
case 'r':
|
|
case 'R':
|
|
case 'p':
|
|
pr = 3;
|
|
break;
|
|
case 'N':
|
|
case 'M':
|
|
case 'I':
|
|
case 'e':
|
|
case 'i':
|
|
case 'm':
|
|
case 'g':
|
|
pr = 4;
|
|
break;
|
|
default:
|
|
tcc_error("unknown constraint '%c'", c);
|
|
pr = 0;
|
|
}
|
|
if (pr > priority)
|
|
priority = pr;
|
|
}
|
|
return priority;
|
|
}
|
|
|
|
static const char *skip_constraint_modifiers(const char *p)
|
|
{
|
|
while (*p == '=' || *p == '&' || *p == '+' || *p == '%')
|
|
p++;
|
|
return p;
|
|
}
|
|
|
|
#define REG_OUT_MASK 0x01
|
|
#define REG_IN_MASK 0x02
|
|
|
|
#define is_reg_allocated(reg) (regs_allocated[reg] & reg_mask)
|
|
|
|
ST_FUNC void asm_compute_constraints(ASMOperand *operands,
|
|
int nb_operands, int nb_outputs,
|
|
const uint8_t *clobber_regs,
|
|
int *pout_reg)
|
|
{
|
|
ASMOperand *op;
|
|
int sorted_op[MAX_ASM_OPERANDS];
|
|
int i, j, k, p1, p2, tmp, reg, c, reg_mask;
|
|
const char *str;
|
|
uint8_t regs_allocated[NB_ASM_REGS];
|
|
|
|
/* init fields */
|
|
for(i=0;i<nb_operands;i++) {
|
|
op = &operands[i];
|
|
op->input_index = -1;
|
|
op->ref_index = -1;
|
|
op->reg = -1;
|
|
op->is_memory = 0;
|
|
op->is_rw = 0;
|
|
}
|
|
/* compute constraint priority and evaluate references to output
|
|
constraints if input constraints */
|
|
for(i=0;i<nb_operands;i++) {
|
|
op = &operands[i];
|
|
str = op->constraint;
|
|
str = skip_constraint_modifiers(str);
|
|
if (isnum(*str) || *str == '[') {
|
|
/* this is a reference to another constraint */
|
|
k = find_constraint(operands, nb_operands, str, NULL);
|
|
if ((unsigned)k >= i || i < nb_outputs)
|
|
tcc_error("invalid reference in constraint %d ('%s')",
|
|
i, str);
|
|
op->ref_index = k;
|
|
if (operands[k].input_index >= 0)
|
|
tcc_error("cannot reference twice the same operand");
|
|
operands[k].input_index = i;
|
|
op->priority = 5;
|
|
} else {
|
|
op->priority = constraint_priority(str);
|
|
}
|
|
}
|
|
|
|
/* sort operands according to their priority */
|
|
for(i=0;i<nb_operands;i++)
|
|
sorted_op[i] = i;
|
|
for(i=0;i<nb_operands - 1;i++) {
|
|
for(j=i+1;j<nb_operands;j++) {
|
|
p1 = operands[sorted_op[i]].priority;
|
|
p2 = operands[sorted_op[j]].priority;
|
|
if (p2 < p1) {
|
|
tmp = sorted_op[i];
|
|
sorted_op[i] = sorted_op[j];
|
|
sorted_op[j] = tmp;
|
|
}
|
|
}
|
|
}
|
|
|
|
for(i = 0;i < NB_ASM_REGS; i++) {
|
|
if (clobber_regs[i])
|
|
regs_allocated[i] = REG_IN_MASK | REG_OUT_MASK;
|
|
else
|
|
regs_allocated[i] = 0;
|
|
}
|
|
/* esp cannot be used */
|
|
regs_allocated[4] = REG_IN_MASK | REG_OUT_MASK;
|
|
/* ebp cannot be used yet */
|
|
regs_allocated[5] = REG_IN_MASK | REG_OUT_MASK;
|
|
|
|
/* allocate registers and generate corresponding asm moves */
|
|
for(i=0;i<nb_operands;i++) {
|
|
j = sorted_op[i];
|
|
op = &operands[j];
|
|
str = op->constraint;
|
|
/* no need to allocate references */
|
|
if (op->ref_index >= 0)
|
|
continue;
|
|
/* select if register is used for output, input or both */
|
|
if (op->input_index >= 0) {
|
|
reg_mask = REG_IN_MASK | REG_OUT_MASK;
|
|
} else if (j < nb_outputs) {
|
|
reg_mask = REG_OUT_MASK;
|
|
} else {
|
|
reg_mask = REG_IN_MASK;
|
|
}
|
|
try_next:
|
|
c = *str++;
|
|
switch(c) {
|
|
case '=':
|
|
goto try_next;
|
|
case '+':
|
|
op->is_rw = 1;
|
|
/* FALL THRU */
|
|
case '&':
|
|
if (j >= nb_outputs)
|
|
tcc_error("'%c' modifier can only be applied to outputs", c);
|
|
reg_mask = REG_IN_MASK | REG_OUT_MASK;
|
|
goto try_next;
|
|
case 'A':
|
|
/* allocate both eax and edx */
|
|
if (is_reg_allocated(TREG_XAX) ||
|
|
is_reg_allocated(TREG_XDX))
|
|
goto try_next;
|
|
op->is_llong = 1;
|
|
op->reg = TREG_XAX;
|
|
regs_allocated[TREG_XAX] |= reg_mask;
|
|
regs_allocated[TREG_XDX] |= reg_mask;
|
|
break;
|
|
case 'a':
|
|
reg = TREG_XAX;
|
|
goto alloc_reg;
|
|
case 'b':
|
|
reg = 3;
|
|
goto alloc_reg;
|
|
case 'c':
|
|
reg = TREG_XCX;
|
|
goto alloc_reg;
|
|
case 'd':
|
|
reg = TREG_XDX;
|
|
goto alloc_reg;
|
|
case 'S':
|
|
reg = 6;
|
|
goto alloc_reg;
|
|
case 'D':
|
|
reg = 7;
|
|
alloc_reg:
|
|
if (is_reg_allocated(reg))
|
|
goto try_next;
|
|
goto reg_found;
|
|
case 'q':
|
|
/* eax, ebx, ecx or edx */
|
|
for(reg = 0; reg < 4; reg++) {
|
|
if (!is_reg_allocated(reg))
|
|
goto reg_found;
|
|
}
|
|
goto try_next;
|
|
case 'r':
|
|
case 'R':
|
|
case 'p': /* A general address, for x86(64) any register is acceptable*/
|
|
/* any general register */
|
|
for(reg = 0; reg < 8; reg++) {
|
|
if (!is_reg_allocated(reg))
|
|
goto reg_found;
|
|
}
|
|
goto try_next;
|
|
reg_found:
|
|
/* now we can reload in the register */
|
|
op->is_llong = 0;
|
|
op->reg = reg;
|
|
regs_allocated[reg] |= reg_mask;
|
|
break;
|
|
case 'e':
|
|
case 'i':
|
|
if (!((op->vt->r & (VT_VALMASK | VT_LVAL)) == VT_CONST))
|
|
goto try_next;
|
|
break;
|
|
case 'I':
|
|
case 'N':
|
|
case 'M':
|
|
if (!((op->vt->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST))
|
|
goto try_next;
|
|
break;
|
|
case 'm':
|
|
case 'g':
|
|
/* nothing special to do because the operand is already in
|
|
memory, except if the pointer itself is stored in a
|
|
memory variable (VT_LLOCAL case) */
|
|
/* XXX: fix constant case */
|
|
/* if it is a reference to a memory zone, it must lie
|
|
in a register, so we reserve the register in the
|
|
input registers and a load will be generated
|
|
later */
|
|
if (j < nb_outputs || c == 'm') {
|
|
if ((op->vt->r & VT_VALMASK) == VT_LLOCAL) {
|
|
/* any general register */
|
|
for(reg = 0; reg < 8; reg++) {
|
|
if (!(regs_allocated[reg] & REG_IN_MASK))
|
|
goto reg_found1;
|
|
}
|
|
goto try_next;
|
|
reg_found1:
|
|
/* now we can reload in the register */
|
|
regs_allocated[reg] |= REG_IN_MASK;
|
|
op->reg = reg;
|
|
op->is_memory = 1;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
tcc_error("asm constraint %d ('%s') could not be satisfied",
|
|
j, op->constraint);
|
|
break;
|
|
}
|
|
/* if a reference is present for that operand, we assign it too */
|
|
if (op->input_index >= 0) {
|
|
operands[op->input_index].reg = op->reg;
|
|
operands[op->input_index].is_llong = op->is_llong;
|
|
}
|
|
}
|
|
|
|
/* compute out_reg. It is used to store outputs registers to memory
|
|
locations references by pointers (VT_LLOCAL case) */
|
|
*pout_reg = -1;
|
|
for(i=0;i<nb_operands;i++) {
|
|
op = &operands[i];
|
|
if (op->reg >= 0 &&
|
|
(op->vt->r & VT_VALMASK) == VT_LLOCAL &&
|
|
!op->is_memory) {
|
|
for(reg = 0; reg < 8; reg++) {
|
|
if (!(regs_allocated[reg] & REG_OUT_MASK))
|
|
goto reg_found2;
|
|
}
|
|
tcc_error("could not find free output register for reloading");
|
|
reg_found2:
|
|
*pout_reg = reg;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* print sorted constraints */
|
|
#ifdef ASM_DEBUG
|
|
for(i=0;i<nb_operands;i++) {
|
|
j = sorted_op[i];
|
|
op = &operands[j];
|
|
printf("%%%d [%s]: \"%s\" r=0x%04x reg=%d\n",
|
|
j,
|
|
op->id ? get_tok_str(op->id, NULL) : "",
|
|
op->constraint,
|
|
op->vt->r,
|
|
op->reg);
|
|
}
|
|
if (*pout_reg >= 0)
|
|
printf("out_reg=%d\n", *pout_reg);
|
|
#endif
|
|
}
|
|
|
|
ST_FUNC void subst_asm_operand(CString *add_str,
|
|
SValue *sv, int modifier)
|
|
{
|
|
int r, reg, size, val;
|
|
char buf[64];
|
|
|
|
r = sv->r;
|
|
if ((r & VT_VALMASK) == VT_CONST) {
|
|
if (!(r & VT_LVAL) && modifier != 'c' && modifier != 'n' &&
|
|
modifier != 'P')
|
|
cstr_ccat(add_str, '$');
|
|
if (r & VT_SYM) {
|
|
const char *name = get_tok_str(sv->sym->v, NULL);
|
|
if (sv->sym->v >= SYM_FIRST_ANOM) {
|
|
/* In case of anonymuous symbols ("L.42", used
|
|
for static data labels) we can't find them
|
|
in the C symbol table when later looking up
|
|
this name. So enter them now into the asm label
|
|
list when we still know the symbol. */
|
|
get_asm_sym(tok_alloc(name, strlen(name))->tok, sv->sym);
|
|
}
|
|
cstr_cat(add_str, name, -1);
|
|
if ((uint32_t)sv->c.i == 0)
|
|
goto no_offset;
|
|
cstr_ccat(add_str, '+');
|
|
}
|
|
val = sv->c.i;
|
|
if (modifier == 'n')
|
|
val = -val;
|
|
snprintf(buf, sizeof(buf), "%d", (int)sv->c.i);
|
|
cstr_cat(add_str, buf, -1);
|
|
no_offset:;
|
|
#ifdef TCC_TARGET_X86_64
|
|
if (r & VT_LVAL)
|
|
cstr_cat(add_str, "(%rip)", -1);
|
|
#endif
|
|
} else if ((r & VT_VALMASK) == VT_LOCAL) {
|
|
#ifdef TCC_TARGET_X86_64
|
|
snprintf(buf, sizeof(buf), "%d(%%rbp)", (int)sv->c.i);
|
|
#else
|
|
snprintf(buf, sizeof(buf), "%d(%%ebp)", (int)sv->c.i);
|
|
#endif
|
|
cstr_cat(add_str, buf, -1);
|
|
} else if (r & VT_LVAL) {
|
|
reg = r & VT_VALMASK;
|
|
if (reg >= VT_CONST)
|
|
tcc_error("internal compiler error");
|
|
snprintf(buf, sizeof(buf), "(%%%s)",
|
|
#ifdef TCC_TARGET_X86_64
|
|
get_tok_str(TOK_ASM_rax + reg, NULL)
|
|
#else
|
|
get_tok_str(TOK_ASM_eax + reg, NULL)
|
|
#endif
|
|
);
|
|
cstr_cat(add_str, buf, -1);
|
|
} else {
|
|
/* register case */
|
|
reg = r & VT_VALMASK;
|
|
if (reg >= VT_CONST)
|
|
tcc_error("internal compiler error");
|
|
|
|
/* choose register operand size */
|
|
if ((sv->type.t & VT_BTYPE) == VT_BYTE ||
|
|
(sv->type.t & VT_BTYPE) == VT_BOOL)
|
|
size = 1;
|
|
else if ((sv->type.t & VT_BTYPE) == VT_SHORT)
|
|
size = 2;
|
|
#ifdef TCC_TARGET_X86_64
|
|
else if ((sv->type.t & VT_BTYPE) == VT_LLONG ||
|
|
(sv->type.t & VT_BTYPE) == VT_PTR)
|
|
size = 8;
|
|
#endif
|
|
else
|
|
size = 4;
|
|
if (size == 1 && reg >= 4)
|
|
size = 4;
|
|
|
|
if (modifier == 'b') {
|
|
if (reg >= 4)
|
|
tcc_error("cannot use byte register");
|
|
size = 1;
|
|
} else if (modifier == 'h') {
|
|
if (reg >= 4)
|
|
tcc_error("cannot use byte register");
|
|
size = -1;
|
|
} else if (modifier == 'w') {
|
|
size = 2;
|
|
} else if (modifier == 'k') {
|
|
size = 4;
|
|
#ifdef TCC_TARGET_X86_64
|
|
} else if (modifier == 'q') {
|
|
size = 8;
|
|
#endif
|
|
}
|
|
|
|
switch(size) {
|
|
case -1:
|
|
reg = TOK_ASM_ah + reg;
|
|
break;
|
|
case 1:
|
|
reg = TOK_ASM_al + reg;
|
|
break;
|
|
case 2:
|
|
reg = TOK_ASM_ax + reg;
|
|
break;
|
|
default:
|
|
reg = TOK_ASM_eax + reg;
|
|
break;
|
|
#ifdef TCC_TARGET_X86_64
|
|
case 8:
|
|
reg = TOK_ASM_rax + reg;
|
|
break;
|
|
#endif
|
|
}
|
|
snprintf(buf, sizeof(buf), "%%%s", get_tok_str(reg, NULL));
|
|
cstr_cat(add_str, buf, -1);
|
|
}
|
|
}
|
|
|
|
/* generate prolog and epilog code for asm statement */
|
|
ST_FUNC void asm_gen_code(ASMOperand *operands, int nb_operands,
|
|
int nb_outputs, int is_output,
|
|
uint8_t *clobber_regs,
|
|
int out_reg)
|
|
{
|
|
uint8_t regs_allocated[NB_ASM_REGS];
|
|
ASMOperand *op;
|
|
int i, reg;
|
|
static uint8_t reg_saved[NB_SAVED_REGS] = { 3, 6, 7 };
|
|
|
|
/* mark all used registers */
|
|
memcpy(regs_allocated, clobber_regs, sizeof(regs_allocated));
|
|
for(i = 0; i < nb_operands;i++) {
|
|
op = &operands[i];
|
|
if (op->reg >= 0)
|
|
regs_allocated[op->reg] = 1;
|
|
}
|
|
if (!is_output) {
|
|
/* generate reg save code */
|
|
for(i = 0; i < NB_SAVED_REGS; i++) {
|
|
reg = reg_saved[i];
|
|
if (regs_allocated[reg]) {
|
|
g(0x50 + reg);
|
|
}
|
|
}
|
|
|
|
/* generate load code */
|
|
for(i = 0; i < nb_operands; i++) {
|
|
op = &operands[i];
|
|
if (op->reg >= 0) {
|
|
if ((op->vt->r & VT_VALMASK) == VT_LLOCAL &&
|
|
op->is_memory) {
|
|
/* memory reference case (for both input and
|
|
output cases) */
|
|
SValue sv;
|
|
sv = *op->vt;
|
|
sv.r = (sv.r & ~VT_VALMASK) | VT_LOCAL | VT_LVAL;
|
|
sv.type.t = VT_PTR;
|
|
load(op->reg, &sv);
|
|
} else if (i >= nb_outputs || op->is_rw) {
|
|
/* load value in register */
|
|
load(op->reg, op->vt);
|
|
if (op->is_llong) {
|
|
SValue sv;
|
|
sv = *op->vt;
|
|
sv.c.i += 4;
|
|
load(TREG_XDX, &sv);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
/* generate save code */
|
|
for(i = 0 ; i < nb_outputs; i++) {
|
|
op = &operands[i];
|
|
if (op->reg >= 0) {
|
|
if ((op->vt->r & VT_VALMASK) == VT_LLOCAL) {
|
|
if (!op->is_memory) {
|
|
SValue sv;
|
|
sv = *op->vt;
|
|
sv.r = (sv.r & ~VT_VALMASK) | VT_LOCAL;
|
|
sv.type.t = VT_PTR;
|
|
load(out_reg, &sv);
|
|
|
|
sv = *op->vt;
|
|
sv.r = (sv.r & ~VT_VALMASK) | out_reg;
|
|
store(op->reg, &sv);
|
|
}
|
|
} else {
|
|
store(op->reg, op->vt);
|
|
if (op->is_llong) {
|
|
SValue sv;
|
|
sv = *op->vt;
|
|
sv.c.i += 4;
|
|
store(TREG_XDX, &sv);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* generate reg restore code */
|
|
for(i = NB_SAVED_REGS - 1; i >= 0; i--) {
|
|
reg = reg_saved[i];
|
|
if (regs_allocated[reg]) {
|
|
g(0x58 + reg);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
ST_FUNC void asm_clobber(uint8_t *clobber_regs, const char *str)
|
|
{
|
|
int reg;
|
|
TokenSym *ts;
|
|
|
|
if (!strcmp(str, "memory") ||
|
|
!strcmp(str, "cc") ||
|
|
!strcmp(str, "flags"))
|
|
return;
|
|
ts = tok_alloc(str, strlen(str));
|
|
reg = ts->tok;
|
|
if (reg >= TOK_ASM_eax && reg <= TOK_ASM_edi) {
|
|
reg -= TOK_ASM_eax;
|
|
} else if (reg >= TOK_ASM_ax && reg <= TOK_ASM_di) {
|
|
reg -= TOK_ASM_ax;
|
|
#ifdef TCC_TARGET_X86_64
|
|
} else if (reg >= TOK_ASM_rax && reg <= TOK_ASM_rdi) {
|
|
reg -= TOK_ASM_rax;
|
|
} else if (1 && str[0] == 'r' &&
|
|
(((str[1] == '8' || str[1] == '9') && str[2] == 0) ||
|
|
(str[1] == '1' && str[2] >= '0' && str[2] <= '5' &&
|
|
str[3] == 0))) {
|
|
/* Do nothing for now. We can't parse the high registers. */
|
|
goto end;
|
|
#endif
|
|
} else {
|
|
tcc_error("invalid clobber register '%s'", str);
|
|
}
|
|
clobber_regs[reg] = 1;
|
|
end:;
|
|
}
|