/* * ARMv4 code generator for TCC * * Copyright (c) 2003 Daniel Glöckner * Copyright (c) 2012 Thomas Preud'homme * * Based on i386-gen.c by Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #ifdef TARGET_DEFS_ONLY #ifdef TCC_ARM_EABI #ifndef TCC_ARM_VFP /* Avoid useless warning */ #define TCC_ARM_VFP #endif #endif /* number of available registers */ #ifdef TCC_ARM_VFP #define NB_REGS 13 #else #define NB_REGS 9 #endif #ifndef TCC_ARM_VERSION # define TCC_ARM_VERSION 5 #endif /* a register can belong to several classes. The classes must be sorted from more general to more precise (see gv2() code which does assumptions on it). */ #define RC_INT 0x0001 /* generic integer register */ #define RC_FLOAT 0x0002 /* generic float register */ #define RC_R0 0x0004 #define RC_R1 0x0008 #define RC_R2 0x0010 #define RC_R3 0x0020 #define RC_R12 0x0040 #define RC_F0 0x0080 #define RC_F1 0x0100 #define RC_F2 0x0200 #define RC_F3 0x0400 #ifdef TCC_ARM_VFP #define RC_F4 0x0800 #define RC_F5 0x1000 #define RC_F6 0x2000 #define RC_F7 0x4000 #endif #define RC_IRET RC_R0 /* function return: integer register */ #define RC_LRET RC_R1 /* function return: second integer register */ #define RC_FRET RC_F0 /* function return: float register */ /* pretty names for the registers */ enum { TREG_R0 = 0, TREG_R1, TREG_R2, TREG_R3, TREG_R12, TREG_F0, TREG_F1, TREG_F2, TREG_F3, #ifdef TCC_ARM_VFP TREG_F4, TREG_F5, TREG_F6, TREG_F7, #endif }; #ifdef TCC_ARM_VFP #define T2CPR(t) (((t) & VT_BTYPE) != VT_FLOAT ? 0x100 : 0) #endif /* return registers for function */ #define REG_IRET TREG_R0 /* single word int return register */ #define REG_LRET TREG_R1 /* second word return register (for long long) */ #define REG_FRET TREG_F0 /* float return register */ #ifdef TCC_ARM_EABI #define TOK___divdi3 TOK___aeabi_ldivmod #define TOK___moddi3 TOK___aeabi_ldivmod #define TOK___udivdi3 TOK___aeabi_uldivmod #define TOK___umoddi3 TOK___aeabi_uldivmod #endif /* defined if function parameters must be evaluated in reverse order */ #define INVERT_FUNC_PARAMS /* defined if structures are passed as pointers. Otherwise structures are directly pushed on stack. */ /* #define FUNC_STRUCT_PARAM_AS_PTR */ /* pointer size, in bytes */ #define PTR_SIZE 4 /* long double size and alignment, in bytes */ #ifdef TCC_ARM_VFP #define LDOUBLE_SIZE 8 #endif #ifndef LDOUBLE_SIZE #define LDOUBLE_SIZE 8 #endif #ifdef TCC_ARM_EABI #define LDOUBLE_ALIGN 8 #else #define LDOUBLE_ALIGN 4 #endif /* maximum alignment (for aligned attribute support) */ #define MAX_ALIGN 8 #define CHAR_IS_UNSIGNED /******************************************************/ /* ELF defines */ #define EM_TCC_TARGET EM_ARM /* relocation type for 32 bit data relocation */ #define R_DATA_32 R_ARM_ABS32 #define R_DATA_PTR R_ARM_ABS32 #define R_JMP_SLOT R_ARM_JUMP_SLOT #define R_COPY R_ARM_COPY #define ELF_START_ADDR 0x00008000 #define ELF_PAGE_SIZE 0x1000 /******************************************************/ #else /* ! TARGET_DEFS_ONLY */ /******************************************************/ #include "tcc.h" ST_DATA const int reg_classes[NB_REGS] = { /* r0 */ RC_INT | RC_R0, /* r1 */ RC_INT | RC_R1, /* r2 */ RC_INT | RC_R2, /* r3 */ RC_INT | RC_R3, /* r12 */ RC_INT | RC_R12, /* f0 */ RC_FLOAT | RC_F0, /* f1 */ RC_FLOAT | RC_F1, /* f2 */ RC_FLOAT | RC_F2, /* f3 */ RC_FLOAT | RC_F3, #ifdef TCC_ARM_VFP /* d4/s8 */ RC_FLOAT | RC_F4, /* d5/s10 */ RC_FLOAT | RC_F5, /* d6/s12 */ RC_FLOAT | RC_F6, /* d7/s14 */ RC_FLOAT | RC_F7, #endif }; static int func_sub_sp_offset, last_itod_magic; static int leaffunc; #if defined(TCC_ARM_EABI) && defined(TCC_ARM_VFP) static CType float_type, double_type, func_float_type, func_double_type; ST_FUNC void arm_init_types(void) { float_type.t = VT_FLOAT; double_type.t = VT_DOUBLE; func_float_type.t = VT_FUNC; func_float_type.ref = sym_push(SYM_FIELD, &float_type, FUNC_CDECL, FUNC_OLD); func_double_type.t = VT_FUNC; func_double_type.ref = sym_push(SYM_FIELD, &double_type, FUNC_CDECL, FUNC_OLD); } #else #define func_float_type func_old_type #define func_double_type func_old_type #define func_ldouble_type func_old_type ST_FUNC void arm_init_types(void) {} #endif static int two2mask(int a,int b) { return (reg_classes[a]|reg_classes[b])&~(RC_INT|RC_FLOAT); } static int regmask(int r) { return reg_classes[r]&~(RC_INT|RC_FLOAT); } /******************************************************/ void o(uint32_t i) { /* this is a good place to start adding big-endian support*/ int ind1; ind1 = ind + 4; if (!cur_text_section) tcc_error("compiler error! This happens f.ex. if the compiler\n" "can't evaluate constant expressions outside of a function."); if (ind1 > cur_text_section->data_allocated) section_realloc(cur_text_section, ind1); cur_text_section->data[ind++] = i&255; i>>=8; cur_text_section->data[ind++] = i&255; i>>=8; cur_text_section->data[ind++] = i&255; i>>=8; cur_text_section->data[ind++] = i; } static uint32_t stuff_const(uint32_t op, uint32_t c) { int try_neg=0; uint32_t nc = 0, negop = 0; switch(op&0x1F00000) { case 0x800000: //add case 0x400000: //sub try_neg=1; negop=op^0xC00000; nc=-c; break; case 0x1A00000: //mov case 0x1E00000: //mvn try_neg=1; negop=op^0x400000; nc=~c; break; case 0x200000: //xor if(c==~0) return (op&0xF010F000)|((op>>16)&0xF)|0x1E00000; break; case 0x0: //and if(c==~0) return (op&0xF010F000)|((op>>16)&0xF)|0x1A00000; case 0x1C00000: //bic try_neg=1; negop=op^0x1C00000; nc=~c; break; case 0x1800000: //orr if(c==~0) return (op&0xFFF0FFFF)|0x1E00000; break; } do { uint32_t m; int i; if(c<256) /* catch undefined <<32 */ return op|c; for(i=2;i<32;i+=2) { m=(0xff>>i)|(0xff<<(32-i)); if(!(c&~m)) return op|(i<<7)|(c<>(32-i)); } op=negop; c=nc; } while(try_neg--); return 0; } //only add,sub void stuff_const_harder(uint32_t op, uint32_t v) { uint32_t x; x=stuff_const(op,v); if(x) o(x); else { uint32_t a[16], nv, no, o2, n2; int i,j,k; a[0]=0xff; o2=(op&0xfff0ffff)|((op&0xf000)<<4);; for(i=1;i<16;i++) a[i]=(a[i-1]>>2)|(a[i-1]<<30); for(i=0;i<12;i++) for(j=i<4?i+12:15;j>=i+4;j--) if((v&(a[i]|a[j]))==v) { o(stuff_const(op,v&a[i])); o(stuff_const(o2,v&a[j])); return; } no=op^0xC00000; n2=o2^0xC00000; nv=-v; for(i=0;i<12;i++) for(j=i<4?i+12:15;j>=i+4;j--) if((nv&(a[i]|a[j]))==nv) { o(stuff_const(no,nv&a[i])); o(stuff_const(n2,nv&a[j])); return; } for(i=0;i<8;i++) for(j=i+4;j<12;j++) for(k=i<4?i+12:15;k>=j+4;k--) if((v&(a[i]|a[j]|a[k]))==v) { o(stuff_const(op,v&a[i])); o(stuff_const(o2,v&a[j])); o(stuff_const(o2,v&a[k])); return; } no=op^0xC00000; nv=-v; for(i=0;i<8;i++) for(j=i+4;j<12;j++) for(k=i<4?i+12:15;k>=j+4;k--) if((nv&(a[i]|a[j]|a[k]))==nv) { o(stuff_const(no,nv&a[i])); o(stuff_const(n2,nv&a[j])); o(stuff_const(n2,nv&a[k])); return; } o(stuff_const(op,v&a[0])); o(stuff_const(o2,v&a[4])); o(stuff_const(o2,v&a[8])); o(stuff_const(o2,v&a[12])); } } ST_FUNC uint32_t encbranch(int pos, int addr, int fail) { addr-=pos+8; addr/=4; if(addr>=0x1000000 || addr<-0x1000000) { if(fail) tcc_error("FIXME: function bigger than 32MB"); return 0; } return 0x0A000000|(addr&0xffffff); } int decbranch(int pos) { int x; x=*(uint32_t *)(cur_text_section->data + pos); x&=0x00ffffff; if(x&0x800000) x-=0x1000000; return x*4+pos+8; } /* output a symbol and patch all calls to it */ void gsym_addr(int t, int a) { uint32_t *x; int lt; while(t) { x=(uint32_t *)(cur_text_section->data + t); t=decbranch(lt=t); if(a==lt+4) *x=0xE1A00000; // nop else { *x &= 0xff000000; *x |= encbranch(lt,a,1); } } } void gsym(int t) { gsym_addr(t, ind); } #ifdef TCC_ARM_VFP static uint32_t vfpr(int r) { if(rTREG_F7) tcc_error("compiler error! register %i is no vfp register",r); return r-5; } #else static uint32_t fpr(int r) { if(rTREG_F3) tcc_error("compiler error! register %i is no fpa register",r); return r-5; } #endif static uint32_t intr(int r) { if(r==4) return 12; if((r<0 || r>4) && r!=14) tcc_error("compiler error! register %i is no int register",r); return r; } static void calcaddr(uint32_t *base, int *off, int *sgn, int maxoff, unsigned shift) { if(*off>maxoff || *off&((1<r; ft = sv->type.t; fc = sv->c.ul; if(fc>=0) sign=0; else { sign=1; fc=-fc; } v = fr & VT_VALMASK; if (fr & VT_LVAL) { uint32_t base = 0xB; // fp if(v == VT_LLOCAL) { v1.type.t = VT_PTR; v1.r = VT_LOCAL | VT_LVAL; v1.c.ul = sv->c.ul; load(base=14 /* lr */, &v1); fc=sign=0; v=VT_LOCAL; } else if(v == VT_CONST) { v1.type.t = VT_PTR; v1.r = fr&~VT_LVAL; v1.c.ul = sv->c.ul; v1.sym=sv->sym; load(base=14, &v1); fc=sign=0; v=VT_LOCAL; } else if(v < VT_CONST) { base=intr(v); fc=sign=0; v=VT_LOCAL; } if(v == VT_LOCAL) { if(is_float(ft)) { calcaddr(&base,&fc,&sign,1020,2); #ifdef TCC_ARM_VFP op=0xED100A00; /* flds */ if(!sign) op|=0x800000; if ((ft & VT_BTYPE) != VT_FLOAT) op|=0x100; /* flds -> fldd */ o(op|(vfpr(r)<<12)|(fc>>2)|(base<<16)); #else op=0xED100100; if(!sign) op|=0x800000; #if LDOUBLE_SIZE == 8 if ((ft & VT_BTYPE) != VT_FLOAT) op|=0x8000; #else if ((ft & VT_BTYPE) == VT_DOUBLE) op|=0x8000; else if ((ft & VT_BTYPE) == VT_LDOUBLE) op|=0x400000; #endif o(op|(fpr(r)<<12)|(fc>>2)|(base<<16)); #endif } else if((ft & (VT_BTYPE|VT_UNSIGNED)) == VT_BYTE || (ft & VT_BTYPE) == VT_SHORT) { calcaddr(&base,&fc,&sign,255,0); op=0xE1500090; if ((ft & VT_BTYPE) == VT_SHORT) op|=0x20; if ((ft & VT_UNSIGNED) == 0) op|=0x40; if(!sign) op|=0x800000; o(op|(intr(r)<<12)|(base<<16)|((fc&0xf0)<<4)|(fc&0xf)); } else { calcaddr(&base,&fc,&sign,4095,0); op=0xE5100000; if(!sign) op|=0x800000; if ((ft & VT_BTYPE) == VT_BYTE || (ft & VT_BTYPE) == VT_BOOL) op|=0x400000; o(op|(intr(r)<<12)|fc|(base<<16)); } return; } } else { if (v == VT_CONST) { op=stuff_const(0xE3A00000|(intr(r)<<12),sv->c.ul); if (fr & VT_SYM || !op) { o(0xE59F0000|(intr(r)<<12)); o(0xEA000000); if(fr & VT_SYM) greloc(cur_text_section, sv->sym, ind, R_ARM_ABS32); o(sv->c.ul); } else o(op); return; } else if (v == VT_LOCAL) { op=stuff_const(0xE28B0000|(intr(r)<<12),sv->c.ul); if (fr & VT_SYM || !op) { o(0xE59F0000|(intr(r)<<12)); o(0xEA000000); if(fr & VT_SYM) // needed ? greloc(cur_text_section, sv->sym, ind, R_ARM_ABS32); o(sv->c.ul); o(0xE08B0000|(intr(r)<<12)|intr(r)); } else o(op); return; } else if(v == VT_CMP) { o(mapcc(sv->c.ul)|0x3A00001|(intr(r)<<12)); o(mapcc(negcc(sv->c.ul))|0x3A00000|(intr(r)<<12)); return; } else if (v == VT_JMP || v == VT_JMPI) { int t; t = v & 1; o(0xE3A00000|(intr(r)<<12)|t); o(0xEA000000); gsym(sv->c.ul); o(0xE3A00000|(intr(r)<<12)|(t^1)); return; } else if (v < VT_CONST) { if(is_float(ft)) #ifdef TCC_ARM_VFP o(0xEEB00A40|(vfpr(r)<<12)|vfpr(v)|T2CPR(ft)); /* fcpyX */ #else o(0xEE008180|(fpr(r)<<12)|fpr(v)); #endif else o(0xE1A00000|(intr(r)<<12)|intr(v)); return; } } tcc_error("load unimplemented!"); } /* store register 'r' in lvalue 'v' */ void store(int r, SValue *sv) { SValue v1; int v, ft, fc, fr, sign; uint32_t op; fr = sv->r; ft = sv->type.t; fc = sv->c.ul; if(fc>=0) sign=0; else { sign=1; fc=-fc; } v = fr & VT_VALMASK; if (fr & VT_LVAL || fr == VT_LOCAL) { uint32_t base = 0xb; if(v < VT_CONST) { base=intr(v); v=VT_LOCAL; fc=sign=0; } else if(v == VT_CONST) { v1.type.t = ft; v1.r = fr&~VT_LVAL; v1.c.ul = sv->c.ul; v1.sym=sv->sym; load(base=14, &v1); fc=sign=0; v=VT_LOCAL; } if(v == VT_LOCAL) { if(is_float(ft)) { calcaddr(&base,&fc,&sign,1020,2); #ifdef TCC_ARM_VFP op=0xED000A00; /* fsts */ if(!sign) op|=0x800000; if ((ft & VT_BTYPE) != VT_FLOAT) op|=0x100; /* fsts -> fstd */ o(op|(vfpr(r)<<12)|(fc>>2)|(base<<16)); #else op=0xED000100; if(!sign) op|=0x800000; #if LDOUBLE_SIZE == 8 if ((ft & VT_BTYPE) != VT_FLOAT) op|=0x8000; #else if ((ft & VT_BTYPE) == VT_DOUBLE) op|=0x8000; if ((ft & VT_BTYPE) == VT_LDOUBLE) op|=0x400000; #endif o(op|(fpr(r)<<12)|(fc>>2)|(base<<16)); #endif return; } else if((ft & VT_BTYPE) == VT_SHORT) { calcaddr(&base,&fc,&sign,255,0); op=0xE14000B0; if(!sign) op|=0x800000; o(op|(intr(r)<<12)|(base<<16)|((fc&0xf0)<<4)|(fc&0xf)); } else { calcaddr(&base,&fc,&sign,4095,0); op=0xE5000000; if(!sign) op|=0x800000; if ((ft & VT_BTYPE) == VT_BYTE || (ft & VT_BTYPE) == VT_BOOL) op|=0x400000; o(op|(intr(r)<<12)|fc|(base<<16)); } return; } } tcc_error("store unimplemented"); } static void gadd_sp(int val) { stuff_const_harder(0xE28DD000,val); } /* 'is_jmp' is '1' if it is a jump */ static void gcall_or_jmp(int is_jmp) { int r; if ((vtop->r & (VT_VALMASK | VT_LVAL)) == VT_CONST) { uint32_t x; /* constant case */ x=encbranch(ind,ind+vtop->c.ul,0); if(x) { if (vtop->r & VT_SYM) { /* relocation case */ greloc(cur_text_section, vtop->sym, ind, R_ARM_PC24); } else put_elf_reloc(symtab_section, cur_text_section, ind, R_ARM_PC24, 0); o(x|(is_jmp?0xE0000000:0xE1000000)); } else { if(!is_jmp) o(0xE28FE004); // add lr,pc,#4 o(0xE51FF004); // ldr pc,[pc,#-4] if (vtop->r & VT_SYM) greloc(cur_text_section, vtop->sym, ind, R_ARM_ABS32); o(vtop->c.ul); } } else { /* otherwise, indirect call */ r = gv(RC_INT); if(!is_jmp) o(0xE1A0E00F); // mov lr,pc o(0xE1A0F000|intr(r)); // mov pc,r } } #ifdef TCC_ARM_HARDFLOAT static int is_float_hgen_aggr(CType *type) { if ((type->t & VT_BTYPE) == VT_STRUCT) { struct Sym *ref; int btype, nb_fields = 0; ref = type->ref; btype = ref->type.t & VT_BTYPE; if (btype == VT_FLOAT || btype == VT_DOUBLE) { for(; ref && btype == (ref->type.t & VT_BTYPE); ref = ref->next, nb_fields++); return !ref && nb_fields <= 4; } } return 0; } struct avail_regs { /* worst case: f(float, double, 3 float struct, double, 3 float struct, double) */ signed char avail[3]; int first_hole; int last_hole; int first_free_reg; }; #define AVAIL_REGS_INITIALIZER (struct avail_regs) { { 0, 0, 0}, 0, 0, 0 } /* Assign a register for a CPRC param with correct size and alignment * size and align are in bytes, as returned by type_size */ int assign_fpreg(struct avail_regs *avregs, int align, int size) { int first_reg = 0; if (avregs->first_free_reg == -1) return -1; if (align >> 3) { // alignment needed (base type: double) first_reg = avregs->first_free_reg; if (first_reg & 1) avregs->avail[avregs->last_hole++] = first_reg++; } else { if (size == 4 && avregs->first_hole != avregs->last_hole) return avregs->avail[avregs->first_hole++]; else first_reg = avregs->first_free_reg; } if (first_reg + size / 4 <= 16) { avregs->first_free_reg = first_reg + size / 4; return first_reg; } avregs->first_free_reg = -1; return -1; } #endif /* Return 1 if this function returns via an sret pointer, 0 otherwise */ ST_FUNC int gfunc_sret(CType *vt, CType *ret, int *ret_align) { #if TCC_ARM_EABI int size, align; size = type_size(vt, &align); if (size > 4) { return 1; } else { *ret_align = 4; ret->ref = NULL; ret->t = VT_INT; return 0; } #else return 1; #endif } /* Generate function call. The function address is pushed first, then all the parameters in call order. This functions pops all the parameters and the function address. */ void gfunc_call(int nb_args) { int size, align, r, args_size, i, ncrn, ncprn, argno, vfp_argno; signed char plan[4][2]={{-1,-1},{-1,-1},{-1,-1},{-1,-1}}; SValue *before_stack = NULL; /* SValue before first on stack argument */ SValue *before_creg = NULL; /* SValue before first argument of type struct in core register */ #ifdef TCC_ARM_HARDFLOAT struct avail_regs avregs = AVAIL_REGS_INITIALIZER; signed char vfp_plan[16]; int plan2[4+16]; int variadic; #else int plan2[4]={0,0,0,0}; #endif int vfp_todo=0; int todo=0, keep; #ifdef TCC_ARM_HARDFLOAT memset(vfp_plan, -1, sizeof(vfp_plan)); memset(plan2, 0, sizeof(plan2)); variadic = (vtop[-nb_args].type.ref->c == FUNC_ELLIPSIS); #endif r = vtop->r & VT_VALMASK; if (r == VT_CMP || (r & ~1) == VT_JMP) gv(RC_INT); #ifdef TCC_ARM_EABI if((vtop[-nb_args].type.ref->type.t & VT_BTYPE) == VT_STRUCT && type_size(&vtop[-nb_args].type.ref->type, &align) <= 4) { SValue tmp; tmp=vtop[-nb_args]; vtop[-nb_args]=vtop[-nb_args+1]; vtop[-nb_args+1]=tmp; --nb_args; } vpushi(0), nb_args++; vtop->type.t = VT_LLONG; #endif ncrn = ncprn = argno = vfp_argno = args_size = 0; /* Assign argument to registers and stack with alignment. If, considering alignment constraints, enough registers of the correct type (core or VFP) are free for the current argument, assign them to it, else allocate on stack with correct alignment. Whenever a structure is allocated in registers or on stack, it is always put on the stack at this stage. The stack is divided in 3 zones. The zone are, from high addresses to low addresses: structures to be loaded in core registers, structures to be loaded in VFP registers, argument allocated to stack. SValue's representing structures in the first zone are moved just after the SValue pointed by before_stack. SValue's representing structures in the second zone are moved just after the SValue pointer by before_creg. */ for(i = nb_args; i-- ;) { int j, assigned_vfpreg = 0; size = type_size(&vtop[-i].type, &align); switch(vtop[-i].type.t & VT_BTYPE) { case VT_STRUCT: case VT_FLOAT: case VT_DOUBLE: case VT_LDOUBLE: #ifdef TCC_ARM_HARDFLOAT if (!variadic) { int hfa = 0; /* Homogeneous float aggregate */ if (is_float(vtop[-i].type.t) || (hfa = is_float_hgen_aggr(&vtop[-i].type))) { int end_reg; assigned_vfpreg = assign_fpreg(&avregs, align, size); end_reg = assigned_vfpreg + (size - 1) / 4; if (assigned_vfpreg >= 0) { vfp_plan[vfp_argno++]=TREG_F0 + assigned_vfpreg/2; if (hfa) { /* if before_creg is not set, it means that no parameter has been * allocated in core register. This implied that no argument has * been allocated on stack neither because a VFP was available for * this parameter. */ if (before_creg) { /* before_creg already exists and we just update it */ vrote(&vtop[-i], &vtop[-i] - before_creg); before_creg++; } for (j = assigned_vfpreg; j <= end_reg; j++) vfp_todo|=(1< 4) { args_size = (ncrn - 4) * 4; if (!before_stack) before_stack = &vtop[-i-1]; } } else { ncrn = 4; /* No need to set before_creg since it has already been set when * assigning argument to core registers */ if (!before_stack) before_stack = &vtop[-i-1]; break; } continue; default: #ifdef TCC_ARM_EABI if (!i) { break; } #endif if (ncrn < 4) { int is_long = (vtop[-i].type.t & VT_BTYPE) == VT_LLONG; if (is_long) { ncrn = (ncrn + 1) & -2; if (ncrn == 4) { argno++; break; } } plan[argno++][0]=ncrn++; if (is_long) { plan[argno-1][1]=ncrn++; } continue; } argno++; } #ifdef TCC_ARM_EABI if(args_size & (align-1)) { vpushi(0); vtop->type.t = VT_VOID; /* padding */ vrott(i+2); args_size += 4; nb_args++; argno++; } #endif args_size += (size + 3) & -4; } #ifdef TCC_ARM_EABI vtop--, nb_args--; #endif args_size = keep = 0; for(i = 0;i < nb_args; i++) { vrotb(keep+1); if ((vtop->type.t & VT_BTYPE) == VT_STRUCT) { size = type_size(&vtop->type, &align); /* align to stack align size */ size = (size + 3) & -4; /* allocate the necessary size on stack */ gadd_sp(-size); /* generate structure store */ r = get_reg(RC_INT); o(0xE1A0000D|(intr(r)<<12)); vset(&vtop->type, r | VT_LVAL, 0); vswap(); vstore(); vtop--; args_size += size; } else if (is_float(vtop->type.t)) { #ifdef TCC_ARM_HARDFLOAT if (!variadic && --vfp_argno<16 && vfp_plan[vfp_argno]!=-1) { plan2[keep++]=vfp_plan[vfp_argno]; continue; } #endif #ifdef TCC_ARM_VFP r=vfpr(gv(RC_FLOAT))<<12; size=4; if ((vtop->type.t & VT_BTYPE) != VT_FLOAT) { size=8; r|=0x101; /* fstms -> fstmd */ } o(0xED2D0A01+r); #else r=fpr(gv(RC_FLOAT))<<12; if ((vtop->type.t & VT_BTYPE) == VT_FLOAT) size = 4; else if ((vtop->type.t & VT_BTYPE) == VT_DOUBLE) size = 8; else size = LDOUBLE_SIZE; if (size == 12) r|=0x400000; else if(size == 8) r|=0x8000; o(0xED2D0100|r|(size>>2)); #endif vtop--; args_size += size; } else { int s; /* simple type (currently always same size) */ /* XXX: implicit cast ? */ size=4; if ((vtop->type.t & VT_BTYPE) == VT_LLONG) { lexpand_nr(); s=-1; if(--argno<4 && plan[argno][1]!=-1) s=plan[argno][1]; argno++; size = 8; if(s==-1) { r = gv(RC_INT); o(0xE52D0004|(intr(r)<<12)); /* str r,[sp,#-4]! */ vtop--; } else { size=0; plan2[keep]=s; keep++; vswap(); } } s=-1; if(--argno<4 && plan[argno][0]!=-1) s=plan[argno][0]; #ifdef TCC_ARM_EABI if(vtop->type.t == VT_VOID) { if(s == -1) o(0xE24DD004); /* sub sp,sp,#4 */ vtop--; } else #endif if(s == -1) { r = gv(RC_INT); o(0xE52D0004|(intr(r)<<12)); /* str r,[sp,#-4]! */ vtop--; } else { size=0; plan2[keep]=s; keep++; } args_size += size; } } for(i = 0; i < keep; i++) { vrotb(keep); gv(regmask(plan2[i])); #ifdef TCC_ARM_HARDFLOAT /* arg is in s(2d+1): plan2[i] alignment occured (ex f,d,f) */ if (i < keep - 1 && is_float(vtop->type.t) && (plan2[i] <= plan2[i + 1])) { o(0xEEF00A40|(vfpr(plan2[i])<<12)|vfpr(plan2[i])); } #endif } save_regs(keep); /* save used temporary registers */ keep++; if(vfp_todo) { int nb_fregs=0; for(i=0;i<16;i++) if(vfp_todo&(1<>1)<<12|nb_fregs); vpushi(0); /* There might be 2 floats in a double VFP reg but that doesn't seem to matter */ if (!(i%2)) vtop->r=TREG_F0+i/2; keep++; nb_fregs++; } if (nb_fregs) { gadd_sp(nb_fregs*4); args_size-=nb_fregs*4; } } if(ncrn) { int nb_regs=0; if (ncrn>4) ncrn=4; todo&=((1<r=i; keep++; nb_regs++; } } args_size-=nb_regs*4; } vrotb(keep); gcall_or_jmp(0); if (args_size) gadd_sp(args_size); #ifdef TCC_ARM_EABI if((vtop->type.ref->type.t & VT_BTYPE) == VT_STRUCT && type_size(&vtop->type.ref->type, &align) <= 4) { store(REG_IRET,vtop-keep); ++keep; } #ifdef TCC_ARM_VFP #ifdef TCC_ARM_HARDFLOAT else if(variadic && is_float(vtop->type.ref->type.t)) { #else else if(is_float(vtop->type.ref->type.t)) { #endif if((vtop->type.ref->type.t & VT_BTYPE) == VT_FLOAT) { o(0xEE000A10); /* fmsr s0,r0 */ } else { o(0xEE000B10); /* fmdlr d0,r0 */ o(0xEE201B10); /* fmdhr d0,r1 */ } } #endif #endif vtop-=keep; leaffunc = 0; } /* generate function prolog of type 't' */ void gfunc_prolog(CType *func_type) { Sym *sym,*sym2; int n,nf,size,align, variadic, struct_ret = 0; #ifdef TCC_ARM_HARDFLOAT struct avail_regs avregs = AVAIL_REGS_INITIALIZER; #endif sym = func_type->ref; func_vt = sym->type; n = nf = 0; variadic = (func_type->ref->c == FUNC_ELLIPSIS); if((func_vt.t & VT_BTYPE) == VT_STRUCT && type_size(&func_vt,&align) > 4) { n++; struct_ret = 1; func_vc = 12; /* Offset from fp of the place to store the result */ } for(sym2=sym->next;sym2 && (n<4 || nf<16);sym2=sym2->next) { size = type_size(&sym2->type, &align); #ifdef TCC_ARM_HARDFLOAT if (!variadic && (is_float(sym2->type.t) || is_float_hgen_aggr(&sym2->type))) { int tmpnf = assign_fpreg(&avregs, align, size) + 1; nf = (tmpnf > nf) ? tmpnf : nf; } else #endif if (n < 4) n += (size + 3) / 4; } o(0xE1A0C00D); /* mov ip,sp */ if(variadic) n=4; if(n) { if(n>4) n=4; #ifdef TCC_ARM_EABI n=(n+1)&-2; #endif o(0xE92D0000|((1<16) nf=16; nf=(nf+1)&-2; /* nf => HARDFLOAT => EABI */ o(0xED2D0A00|nf); /* save s0-s15 on stack if needed */ } o(0xE92D5800); /* save fp, ip, lr */ o(0xE1A0B00D); /* mov fp, sp */ func_sub_sp_offset = ind; o(0xE1A00000); /* nop, leave space for stack adjustment in epilogue */ { int addr, pn = struct_ret, sn = 0; /* pn=core, sn=stack */ #ifdef TCC_ARM_HARDFLOAT func_vc += nf * 4; avregs = AVAIL_REGS_INITIALIZER; #endif while ((sym = sym->next)) { CType *type; type = &sym->type; size = type_size(type, &align); size = (size + 3) >> 2; align = (align + 3) & ~3; #ifdef TCC_ARM_HARDFLOAT if (!variadic && (is_float(sym->type.t) || is_float_hgen_aggr(&sym->type))) { int fpn = assign_fpreg(&avregs, align, size << 2); if (fpn >= 0) { addr = fpn * 4; } else goto from_stack; } else #endif if (pn < 4) { #ifdef TCC_ARM_EABI pn = (pn + (align-1)/4) & -(align/4); #endif addr = (nf + pn) * 4; pn += size; if (!sn && pn > 4) sn = (pn - 4); } else { #ifdef TCC_ARM_HARDFLOAT from_stack: #endif #ifdef TCC_ARM_EABI sn = (sn + (align-1)/4) & -(align/4); #endif addr = (n + nf + sn) * 4; sn += size; } sym_push(sym->v & ~SYM_FIELD, type, VT_LOCAL | lvalue_type(type->t), addr+12); } } last_itod_magic=0; leaffunc = 1; loc = 0; } /* generate function epilog */ void gfunc_epilog(void) { uint32_t x; int diff; #ifdef TCC_ARM_EABI /* Useless but harmless copy of the float result into main register(s) in case of variadic function in the hardfloat variant */ if(is_float(func_vt.t)) { if((func_vt.t & VT_BTYPE) == VT_FLOAT) o(0xEE100A10); /* fmrs r0, s0 */ else { o(0xEE100B10); /* fmrdl r0, d0 */ o(0xEE301B10); /* fmrdh r1, d0 */ } } #endif o(0xE89BA800); /* restore fp, sp, pc */ diff = (-loc + 3) & -4; #ifdef TCC_ARM_EABI if(!leaffunc) diff = ((diff + 11) & -8) - 4; #endif if(diff > 0) { x=stuff_const(0xE24BD000, diff); /* sub sp,fp,# */ if(x) *(uint32_t *)(cur_text_section->data + func_sub_sp_offset) = x; else { int addr; addr=ind; o(0xE59FC004); /* ldr ip,[pc+4] */ o(0xE04BD00C); /* sub sp,fp,ip */ o(0xE1A0F00E); /* mov pc,lr */ o(diff); *(uint32_t *)(cur_text_section->data + func_sub_sp_offset) = 0xE1000000|encbranch(func_sub_sp_offset,addr,1); } } } /* generate a jump to a label */ int gjmp(int t) { int r; r=ind; o(0xE0000000|encbranch(r,t,1)); return r; } /* generate a jump to a fixed address */ void gjmp_addr(int a) { gjmp(a); } /* generate a test. set 'inv' to invert test. Stack entry is popped */ int gtst(int inv, int t) { int v, r; uint32_t op; v = vtop->r & VT_VALMASK; r=ind; if (v == VT_CMP) { op=mapcc(inv?negcc(vtop->c.i):vtop->c.i); op|=encbranch(r,t,1); o(op); t=r; } else if (v == VT_JMP || v == VT_JMPI) { if ((v & 1) == inv) { if(!vtop->c.i) vtop->c.i=t; else { uint32_t *x; int p,lp; if(t) { p = vtop->c.i; do { p = decbranch(lp=p); } while(p); x = (uint32_t *)(cur_text_section->data + lp); *x &= 0xff000000; *x |= encbranch(lp,t,1); } t = vtop->c.i; } } else { t = gjmp(t); gsym(vtop->c.i); } } else { if (is_float(vtop->type.t)) { r=gv(RC_FLOAT); #ifdef TCC_ARM_VFP o(0xEEB50A40|(vfpr(r)<<12)|T2CPR(vtop->type.t)); /* fcmpzX */ o(0xEEF1FA10); /* fmstat */ #else o(0xEE90F118|(fpr(r)<<16)); #endif vtop->r = VT_CMP; vtop->c.i = TOK_NE; return gtst(inv, t); } else if ((vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST) { /* constant jmp optimization */ if ((vtop->c.i != 0) != inv) t = gjmp(t); } else { v = gv(RC_INT); o(0xE3300000|(intr(v)<<16)); vtop->r = VT_CMP; vtop->c.i = TOK_NE; return gtst(inv, t); } } vtop--; return t; } /* generate an integer binary operation */ void gen_opi(int op) { int c, func = 0; uint32_t opc = 0, r, fr; unsigned short retreg = REG_IRET; c=0; switch(op) { case '+': opc = 0x8; c=1; break; case TOK_ADDC1: /* add with carry generation */ opc = 0x9; c=1; break; case '-': opc = 0x4; c=1; break; case TOK_SUBC1: /* sub with carry generation */ opc = 0x5; c=1; break; case TOK_ADDC2: /* add with carry use */ opc = 0xA; c=1; break; case TOK_SUBC2: /* sub with carry use */ opc = 0xC; c=1; break; case '&': opc = 0x0; c=1; break; case '^': opc = 0x2; c=1; break; case '|': opc = 0x18; c=1; break; case '*': gv2(RC_INT, RC_INT); r = vtop[-1].r; fr = vtop[0].r; vtop--; o(0xE0000090|(intr(r)<<16)|(intr(r)<<8)|intr(fr)); return; case TOK_SHL: opc = 0; c=2; break; case TOK_SHR: opc = 1; c=2; break; case TOK_SAR: opc = 2; c=2; break; case '/': case TOK_PDIV: func=TOK___divsi3; c=3; break; case TOK_UDIV: func=TOK___udivsi3; c=3; break; case '%': #ifdef TCC_ARM_EABI func=TOK___aeabi_idivmod; retreg=REG_LRET; #else func=TOK___modsi3; #endif c=3; break; case TOK_UMOD: #ifdef TCC_ARM_EABI func=TOK___aeabi_uidivmod; retreg=REG_LRET; #else func=TOK___umodsi3; #endif c=3; break; case TOK_UMULL: gv2(RC_INT, RC_INT); r=intr(vtop[-1].r2=get_reg(RC_INT)); c=vtop[-1].r; vtop[-1].r=get_reg_ex(RC_INT,regmask(c)); vtop--; o(0xE0800090|(r<<16)|(intr(vtop->r)<<12)|(intr(c)<<8)|intr(vtop[1].r)); return; default: opc = 0x15; c=1; break; } switch(c) { case 1: if((vtop[-1].r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST) { if(opc == 4 || opc == 5 || opc == 0xc) { vswap(); opc|=2; // sub -> rsb } } if ((vtop->r & VT_VALMASK) == VT_CMP || (vtop->r & (VT_VALMASK & ~1)) == VT_JMP) gv(RC_INT); vswap(); c=intr(gv(RC_INT)); vswap(); opc=0xE0000000|(opc<<20)|(c<<16); if((vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST) { uint32_t x; x=stuff_const(opc|0x2000000,vtop->c.i); if(x) { r=intr(vtop[-1].r=get_reg_ex(RC_INT,regmask(vtop[-1].r))); o(x|(r<<12)); goto done; } } fr=intr(gv(RC_INT)); r=intr(vtop[-1].r=get_reg_ex(RC_INT,two2mask(vtop->r,vtop[-1].r))); o(opc|(r<<12)|fr); done: vtop--; if (op >= TOK_ULT && op <= TOK_GT) { vtop->r = VT_CMP; vtop->c.i = op; } break; case 2: opc=0xE1A00000|(opc<<5); if ((vtop->r & VT_VALMASK) == VT_CMP || (vtop->r & (VT_VALMASK & ~1)) == VT_JMP) gv(RC_INT); vswap(); r=intr(gv(RC_INT)); vswap(); opc|=r; if ((vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST) { fr=intr(vtop[-1].r=get_reg_ex(RC_INT,regmask(vtop[-1].r))); c = vtop->c.i & 0x1f; o(opc|(c<<7)|(fr<<12)); } else { fr=intr(gv(RC_INT)); c=intr(vtop[-1].r=get_reg_ex(RC_INT,two2mask(vtop->r,vtop[-1].r))); o(opc|(c<<12)|(fr<<8)|0x10); } vtop--; break; case 3: vpush_global_sym(&func_old_type, func); vrott(3); gfunc_call(2); vpushi(0); vtop->r = retreg; break; default: tcc_error("gen_opi %i unimplemented!",op); } } #ifdef TCC_ARM_VFP static int is_zero(int i) { if((vtop[i].r & (VT_VALMASK | VT_LVAL | VT_SYM)) != VT_CONST) return 0; if (vtop[i].type.t == VT_FLOAT) return (vtop[i].c.f == 0.f); else if (vtop[i].type.t == VT_DOUBLE) return (vtop[i].c.d == 0.0); return (vtop[i].c.ld == 0.l); } /* generate a floating point operation 'v = t1 op t2' instruction. The * two operands are guaranted to have the same floating point type */ void gen_opf(int op) { uint32_t x; int fneg=0,r; x=0xEE000A00|T2CPR(vtop->type.t); switch(op) { case '+': if(is_zero(-1)) vswap(); if(is_zero(0)) { vtop--; return; } x|=0x300000; break; case '-': x|=0x300040; if(is_zero(0)) { vtop--; return; } if(is_zero(-1)) { x|=0x810000; /* fsubX -> fnegX */ vswap(); vtop--; fneg=1; } break; case '*': x|=0x200000; break; case '/': x|=0x800000; break; default: if(op < TOK_ULT || op > TOK_GT) { tcc_error("unknown fp op %x!",op); return; } if(is_zero(-1)) { vswap(); switch(op) { case TOK_LT: op=TOK_GT; break; case TOK_GE: op=TOK_ULE; break; case TOK_LE: op=TOK_GE; break; case TOK_GT: op=TOK_ULT; break; } } x|=0xB40040; /* fcmpX */ if(op!=TOK_EQ && op!=TOK_NE) x|=0x80; /* fcmpX -> fcmpeX */ if(is_zero(0)) { vtop--; o(x|0x10000|(vfpr(gv(RC_FLOAT))<<12)); /* fcmp(e)X -> fcmp(e)zX */ } else { x|=vfpr(gv(RC_FLOAT)); vswap(); o(x|(vfpr(gv(RC_FLOAT))<<12)); vtop--; } o(0xEEF1FA10); /* fmstat */ switch(op) { case TOK_LE: op=TOK_ULE; break; case TOK_LT: op=TOK_ULT; break; case TOK_UGE: op=TOK_GE; break; case TOK_UGT: op=TOK_GT; break; } vtop->r = VT_CMP; vtop->c.i = op; return; } r=gv(RC_FLOAT); x|=vfpr(r); r=regmask(r); if(!fneg) { int r2; vswap(); r2=gv(RC_FLOAT); x|=vfpr(r2)<<16; r|=regmask(r2); } vtop->r=get_reg_ex(RC_FLOAT,r); if(!fneg) vtop--; o(x|(vfpr(vtop->r)<<12)); } #else static uint32_t is_fconst() { long double f; uint32_t r; if((vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) != VT_CONST) return 0; if (vtop->type.t == VT_FLOAT) f = vtop->c.f; else if (vtop->type.t == VT_DOUBLE) f = vtop->c.d; else f = vtop->c.ld; if(!ieee_finite(f)) return 0; r=0x8; if(f<0.0) { r=0x18; f=-f; } if(f==0.0) return r; if(f==1.0) return r|1; if(f==2.0) return r|2; if(f==3.0) return r|3; if(f==4.0) return r|4; if(f==5.0) return r|5; if(f==0.5) return r|6; if(f==10.0) return r|7; return 0; } /* generate a floating point operation 'v = t1 op t2' instruction. The two operands are guaranted to have the same floating point type */ void gen_opf(int op) { uint32_t x, r, r2, c1, c2; //fputs("gen_opf\n",stderr); vswap(); c1 = is_fconst(); vswap(); c2 = is_fconst(); x=0xEE000100; #if LDOUBLE_SIZE == 8 if ((vtop->type.t & VT_BTYPE) != VT_FLOAT) x|=0x80; #else if ((vtop->type.t & VT_BTYPE) == VT_DOUBLE) x|=0x80; else if ((vtop->type.t & VT_BTYPE) == VT_LDOUBLE) x|=0x80000; #endif switch(op) { case '+': if(!c2) { vswap(); c2=c1; } vswap(); r=fpr(gv(RC_FLOAT)); vswap(); if(c2) { if(c2>0xf) x|=0x200000; // suf r2=c2&0xf; } else { r2=fpr(gv(RC_FLOAT)); } break; case '-': if(c2) { if(c2<=0xf) x|=0x200000; // suf r2=c2&0xf; vswap(); r=fpr(gv(RC_FLOAT)); vswap(); } else if(c1 && c1<=0xf) { x|=0x300000; // rsf r2=c1; r=fpr(gv(RC_FLOAT)); vswap(); } else { x|=0x200000; // suf vswap(); r=fpr(gv(RC_FLOAT)); vswap(); r2=fpr(gv(RC_FLOAT)); } break; case '*': if(!c2 || c2>0xf) { vswap(); c2=c1; } vswap(); r=fpr(gv(RC_FLOAT)); vswap(); if(c2 && c2<=0xf) r2=c2; else r2=fpr(gv(RC_FLOAT)); x|=0x100000; // muf break; case '/': if(c2 && c2<=0xf) { x|=0x400000; // dvf r2=c2; vswap(); r=fpr(gv(RC_FLOAT)); vswap(); } else if(c1 && c1<=0xf) { x|=0x500000; // rdf r2=c1; r=fpr(gv(RC_FLOAT)); vswap(); } else { x|=0x400000; // dvf vswap(); r=fpr(gv(RC_FLOAT)); vswap(); r2=fpr(gv(RC_FLOAT)); } break; default: if(op >= TOK_ULT && op <= TOK_GT) { x|=0xd0f110; // cmfe /* bug (intention?) in Linux FPU emulator doesn't set carry if equal */ switch(op) { case TOK_ULT: case TOK_UGE: case TOK_ULE: case TOK_UGT: tcc_error("unsigned comparision on floats?"); break; case TOK_LT: op=TOK_Nset; break; case TOK_LE: op=TOK_ULE; /* correct in unordered case only if AC bit in FPSR set */ break; case TOK_EQ: case TOK_NE: x&=~0x400000; // cmfe -> cmf break; } if(c1 && !c2) { c2=c1; vswap(); switch(op) { case TOK_Nset: op=TOK_GT; break; case TOK_GE: op=TOK_ULE; break; case TOK_ULE: op=TOK_GE; break; case TOK_GT: op=TOK_Nset; break; } } vswap(); r=fpr(gv(RC_FLOAT)); vswap(); if(c2) { if(c2>0xf) x|=0x200000; r2=c2&0xf; } else { r2=fpr(gv(RC_FLOAT)); } vtop[-1].r = VT_CMP; vtop[-1].c.i = op; } else { tcc_error("unknown fp op %x!",op); return; } } if(vtop[-1].r == VT_CMP) c1=15; else { c1=vtop->r; if(r2&0x8) c1=vtop[-1].r; vtop[-1].r=get_reg_ex(RC_FLOAT,two2mask(vtop[-1].r,c1)); c1=fpr(vtop[-1].r); } vtop--; o(x|(r<<16)|(c1<<12)|r2); } #endif /* convert integers to fp 't' type. Must handle 'int', 'unsigned int' and 'long long' cases. */ ST_FUNC void gen_cvt_itof1(int t) { uint32_t r, r2; int bt; bt=vtop->type.t & VT_BTYPE; if(bt == VT_INT || bt == VT_SHORT || bt == VT_BYTE) { #ifndef TCC_ARM_VFP uint32_t dsize = 0; #endif r=intr(gv(RC_INT)); #ifdef TCC_ARM_VFP r2=vfpr(vtop->r=get_reg(RC_FLOAT)); o(0xEE000A10|(r<<12)|(r2<<16)); /* fmsr */ r2|=r2<<12; if(!(vtop->type.t & VT_UNSIGNED)) r2|=0x80; /* fuitoX -> fsituX */ o(0xEEB80A40|r2|T2CPR(t)); /* fYitoX*/ #else r2=fpr(vtop->r=get_reg(RC_FLOAT)); if((t & VT_BTYPE) != VT_FLOAT) dsize=0x80; /* flts -> fltd */ o(0xEE000110|dsize|(r2<<16)|(r<<12)); /* flts */ if((vtop->type.t & (VT_UNSIGNED|VT_BTYPE)) == (VT_UNSIGNED|VT_INT)) { uint32_t off = 0; o(0xE3500000|(r<<12)); /* cmp */ r=fpr(get_reg(RC_FLOAT)); if(last_itod_magic) { off=ind+8-last_itod_magic; off/=4; if(off>255) off=0; } o(0xBD1F0100|(r<<12)|off); /* ldflts */ if(!off) { o(0xEA000000); /* b */ last_itod_magic=ind; o(0x4F800000); /* 4294967296.0f */ } o(0xBE000100|dsize|(r2<<16)|(r2<<12)|r); /* adflt */ } #endif return; } else if(bt == VT_LLONG) { int func; CType *func_type = 0; if((t & VT_BTYPE) == VT_FLOAT) { func_type = &func_float_type; if(vtop->type.t & VT_UNSIGNED) func=TOK___floatundisf; else func=TOK___floatdisf; #if LDOUBLE_SIZE != 8 } else if((t & VT_BTYPE) == VT_LDOUBLE) { func_type = &func_ldouble_type; if(vtop->type.t & VT_UNSIGNED) func=TOK___floatundixf; else func=TOK___floatdixf; } else if((t & VT_BTYPE) == VT_DOUBLE) { #else } else if((t & VT_BTYPE) == VT_DOUBLE || (t & VT_BTYPE) == VT_LDOUBLE) { #endif func_type = &func_double_type; if(vtop->type.t & VT_UNSIGNED) func=TOK___floatundidf; else func=TOK___floatdidf; } if(func_type) { vpush_global_sym(func_type, func); vswap(); gfunc_call(1); vpushi(0); vtop->r=TREG_F0; return; } } tcc_error("unimplemented gen_cvt_itof %x!",vtop->type.t); } /* convert fp to int 't' type */ void gen_cvt_ftoi(int t) { uint32_t r, r2; int u, func = 0; u=t&VT_UNSIGNED; t&=VT_BTYPE; r2=vtop->type.t & VT_BTYPE; if(t==VT_INT) { #ifdef TCC_ARM_VFP r=vfpr(gv(RC_FLOAT)); u=u?0:0x10000; o(0xEEBC0AC0|(r<<12)|r|T2CPR(r2)|u); /* ftoXizY */ r2=intr(vtop->r=get_reg(RC_INT)); o(0xEE100A10|(r<<16)|(r2<<12)); return; #else if(u) { if(r2 == VT_FLOAT) func=TOK___fixunssfsi; #if LDOUBLE_SIZE != 8 else if(r2 == VT_LDOUBLE) func=TOK___fixunsxfsi; else if(r2 == VT_DOUBLE) #else else if(r2 == VT_LDOUBLE || r2 == VT_DOUBLE) #endif func=TOK___fixunsdfsi; } else { r=fpr(gv(RC_FLOAT)); r2=intr(vtop->r=get_reg(RC_INT)); o(0xEE100170|(r2<<12)|r); return; } #endif } else if(t == VT_LLONG) { // unsigned handled in gen_cvt_ftoi1 if(r2 == VT_FLOAT) func=TOK___fixsfdi; #if LDOUBLE_SIZE != 8 else if(r2 == VT_LDOUBLE) func=TOK___fixxfdi; else if(r2 == VT_DOUBLE) #else else if(r2 == VT_LDOUBLE || r2 == VT_DOUBLE) #endif func=TOK___fixdfdi; } if(func) { vpush_global_sym(&func_old_type, func); vswap(); gfunc_call(1); vpushi(0); if(t == VT_LLONG) vtop->r2 = REG_LRET; vtop->r = REG_IRET; return; } tcc_error("unimplemented gen_cvt_ftoi!"); } /* convert from one floating point type to another */ void gen_cvt_ftof(int t) { #ifdef TCC_ARM_VFP if(((vtop->type.t & VT_BTYPE) == VT_FLOAT) != ((t & VT_BTYPE) == VT_FLOAT)) { uint32_t r = vfpr(gv(RC_FLOAT)); o(0xEEB70AC0|(r<<12)|r|T2CPR(vtop->type.t)); } #else /* all we have to do on i386 and FPA ARM is to put the float in a register */ gv(RC_FLOAT); #endif } /* computed goto support */ void ggoto(void) { gcall_or_jmp(1); vtop--; } /* Save the stack pointer onto the stack and return the location of its address */ ST_FUNC void gen_vla_sp_save(int addr) { tcc_error("variable length arrays unsupported for this target"); } /* Restore the SP from a location on the stack */ ST_FUNC void gen_vla_sp_restore(int addr) { tcc_error("variable length arrays unsupported for this target"); } /* Subtract from the stack pointer, and push the resulting value onto the stack */ ST_FUNC void gen_vla_alloc(CType *type, int align) { tcc_error("variable length arrays unsupported for this target"); } /* end of ARM code generator */ /*************************************************************/ #endif /*************************************************************/