/* * x86-64 code generator for TCC * * Copyright (c) 2008 Shinichiro Hamaji * * Based on i386-gen.c by Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #ifdef TARGET_DEFS_ONLY /* number of available registers */ #define NB_REGS 5 #define NB_ASM_REGS 8 /* a register can belong to several classes. The classes must be sorted from more general to more precise (see gv2() code which does assumptions on it). */ #define RC_INT 0x0001 /* generic integer register */ #define RC_FLOAT 0x0002 /* generic float register */ #define RC_RAX 0x0004 #define RC_RCX 0x0008 #define RC_RDX 0x0010 #define RC_R8 0x0100 #define RC_R9 0x0200 #define RC_XMM0 0x0020 #define RC_ST0 0x0040 /* only for long double */ #define RC_IRET RC_RAX /* function return: integer register */ #define RC_LRET RC_RDX /* function return: second integer register */ #define RC_FRET RC_XMM0 /* function return: float register */ /* pretty names for the registers */ enum { TREG_RAX = 0, TREG_RCX = 1, TREG_RDX = 2, TREG_XMM0 = 3, TREG_ST0 = 4, TREG_RSI = 6, TREG_RDI = 7, TREG_R8 = 8, TREG_R9 = 9, TREG_R10 = 10, TREG_R11 = 11, TREG_MEM = 0x10, }; #define REX_BASE(reg) (((reg) >> 3) & 1) #define REG_VALUE(reg) ((reg) & 7) /* return registers for function */ #define REG_IRET TREG_RAX /* single word int return register */ #define REG_LRET TREG_RDX /* second word return register (for long long) */ #define REG_FRET TREG_XMM0 /* float return register */ /* defined if function parameters must be evaluated in reverse order */ #define INVERT_FUNC_PARAMS /* pointer size, in bytes */ #define PTR_SIZE 8 /* long double size and alignment, in bytes */ #define LDOUBLE_SIZE 16 #define LDOUBLE_ALIGN 8 /* maximum alignment (for aligned attribute support) */ #define MAX_ALIGN 8 ST_FUNC void gen_opl(int op); ST_FUNC void gen_le64(int64_t c); /******************************************************/ /* ELF defines */ #define EM_TCC_TARGET EM_X86_64 /* relocation type for 32 bit data relocation */ #define R_DATA_32 R_X86_64_32 #define R_DATA_PTR R_X86_64_64 #define R_JMP_SLOT R_X86_64_JUMP_SLOT #define R_COPY R_X86_64_COPY #define ELF_START_ADDR 0x08048000 #define ELF_PAGE_SIZE 0x1000 /******************************************************/ #else /* ! TARGET_DEFS_ONLY */ /******************************************************/ #include "tcc.h" #include ST_DATA const int reg_classes[NB_REGS] = { /* eax */ RC_INT | RC_RAX, /* ecx */ RC_INT | RC_RCX, /* edx */ RC_INT | RC_RDX, /* xmm0 */ RC_FLOAT | RC_XMM0, /* st0 */ RC_ST0, #if NB_REGS == 10 0, 0, 0, RC_INT | RC_R8, RC_INT | RC_R9, #endif }; static unsigned long func_sub_sp_offset; static int func_ret_sub; /* XXX: make it faster ? */ void g(int c) { int ind1; ind1 = ind + 1; if (ind1 > cur_text_section->data_allocated) section_realloc(cur_text_section, ind1); cur_text_section->data[ind] = c; ind = ind1; } void o(unsigned int c) { while (c) { g(c); c = c >> 8; } } void gen_le16(int v) { g(v); g(v >> 8); } void gen_le32(int c) { g(c); g(c >> 8); g(c >> 16); g(c >> 24); } void gen_le64(int64_t c) { g(c); g(c >> 8); g(c >> 16); g(c >> 24); g(c >> 32); g(c >> 40); g(c >> 48); g(c >> 56); } void orex(int ll, int r, int r2, int b) { if ((r & VT_VALMASK) >= VT_CONST) r = 0; if ((r2 & VT_VALMASK) >= VT_CONST) r2 = 0; if (ll || REX_BASE(r) || REX_BASE(r2)) o(0x40 | REX_BASE(r) | (REX_BASE(r2) << 2) | (ll << 3)); o(b); } /* output a symbol and patch all calls to it */ void gsym_addr(int t, int a) { int n, *ptr; while (t) { ptr = (int *)(cur_text_section->data + t); n = *ptr; /* next value */ *ptr = a - t - 4; t = n; } } void gsym(int t) { gsym_addr(t, ind); } /* psym is used to put an instruction with a data field which is a reference to a symbol. It is in fact the same as oad ! */ #define psym oad static int is64_type(int t) { return ((t & VT_BTYPE) == VT_PTR || (t & VT_BTYPE) == VT_FUNC || (t & VT_BTYPE) == VT_LLONG); } static int is_sse_float(int t) { int bt; bt = t & VT_BTYPE; return bt == VT_DOUBLE || bt == VT_FLOAT; } /* instruction + 4 bytes data. Return the address of the data */ ST_FUNC int oad(int c, int s) { int ind1; o(c); ind1 = ind + 4; if (ind1 > cur_text_section->data_allocated) section_realloc(cur_text_section, ind1); *(int *)(cur_text_section->data + ind) = s; s = ind; ind = ind1; return s; } ST_FUNC void gen_addr32(int r, Sym *sym, int c) { if (r & VT_SYM) greloc(cur_text_section, sym, ind, R_X86_64_32); gen_le32(c); } /* output constant with relocation if 'r & VT_SYM' is true */ ST_FUNC void gen_addr64(int r, Sym *sym, int64_t c) { if (r & VT_SYM) greloc(cur_text_section, sym, ind, R_X86_64_64); gen_le64(c); } /* output constant with relocation if 'r & VT_SYM' is true */ ST_FUNC void gen_addrpc32(int r, Sym *sym, int c) { if (r & VT_SYM) greloc(cur_text_section, sym, ind, R_X86_64_PC32); gen_le32(c-4); } /* output got address with relocation */ static void gen_gotpcrel(int r, Sym *sym, int c) { #ifndef TCC_TARGET_PE Section *sr; ElfW(Rela) *rel; greloc(cur_text_section, sym, ind, R_X86_64_GOTPCREL); sr = cur_text_section->reloc; rel = (ElfW(Rela) *)(sr->data + sr->data_offset - sizeof(ElfW(Rela))); rel->r_addend = -4; #else printf("picpic: %s %x %x | %02x %02x %02x\n", get_tok_str(sym->v, NULL), c, r, cur_text_section->data[ind-3], cur_text_section->data[ind-2], cur_text_section->data[ind-1] ); greloc(cur_text_section, sym, ind, R_X86_64_PC32); #endif gen_le32(0); if (c) { /* we use add c, %xxx for displacement */ orex(1, r, 0, 0x81); o(0xc0 + REG_VALUE(r)); gen_le32(c); } } static void gen_modrm_impl(int op_reg, int r, Sym *sym, int c, int is_got) { op_reg = REG_VALUE(op_reg) << 3; if ((r & VT_VALMASK) == VT_CONST) { /* constant memory reference */ o(0x05 | op_reg); if (is_got) { gen_gotpcrel(r, sym, c); } else { gen_addrpc32(r, sym, c); } } else if ((r & VT_VALMASK) == VT_LOCAL) { /* currently, we use only ebp as base */ if (c == (char)c) { /* short reference */ o(0x45 | op_reg); g(c); } else { oad(0x85 | op_reg, c); } } else if ((r & VT_VALMASK) >= TREG_MEM) { if (c) { g(0x80 | op_reg | REG_VALUE(r)); gen_le32(c); } else { g(0x00 | op_reg | REG_VALUE(r)); } } else { g(0x00 | op_reg | REG_VALUE(r)); } } /* generate a modrm reference. 'op_reg' contains the addtionnal 3 opcode bits */ static void gen_modrm(int op_reg, int r, Sym *sym, int c) { gen_modrm_impl(op_reg, r, sym, c, 0); } /* generate a modrm reference. 'op_reg' contains the addtionnal 3 opcode bits */ static void gen_modrm64(int opcode, int op_reg, int r, Sym *sym, int c) { int is_got; is_got = (op_reg & TREG_MEM) && !(sym->type.t & VT_STATIC); orex(1, r, op_reg, opcode); gen_modrm_impl(op_reg, r, sym, c, is_got); } /* load 'r' from value 'sv' */ void load(int r, SValue *sv) { int v, t, ft, fc, fr; SValue v1; #ifdef TCC_TARGET_PE SValue v2; sv = pe_getimport(sv, &v2); #endif fr = sv->r; ft = sv->type.t; fc = sv->c.ul; #ifndef TCC_TARGET_PE /* we use indirect access via got */ if ((fr & VT_VALMASK) == VT_CONST && (fr & VT_SYM) && (fr & VT_LVAL) && !(sv->sym->type.t & VT_STATIC)) { /* use the result register as a temporal register */ int tr = r | TREG_MEM; if (is_float(ft)) { /* we cannot use float registers as a temporal register */ tr = get_reg(RC_INT) | TREG_MEM; } gen_modrm64(0x8b, tr, fr, sv->sym, 0); /* load from the temporal register */ fr = tr | VT_LVAL; } #endif v = fr & VT_VALMASK; if (fr & VT_LVAL) { int b, ll; if (v == VT_LLOCAL) { v1.type.t = VT_PTR; v1.r = VT_LOCAL | VT_LVAL; v1.c.ul = fc; load(r, &v1); fr = r; } ll = 0; if ((ft & VT_BTYPE) == VT_FLOAT) { b = 0x6e0f66, r = 0; /* movd */ } else if ((ft & VT_BTYPE) == VT_DOUBLE) { b = 0x7e0ff3, r = 0; /* movq */ } else if ((ft & VT_BTYPE) == VT_LDOUBLE) { b = 0xdb, r = 5; /* fldt */ } else if ((ft & VT_TYPE) == VT_BYTE) { b = 0xbe0f; /* movsbl */ } else if ((ft & VT_TYPE) == (VT_BYTE | VT_UNSIGNED)) { b = 0xb60f; /* movzbl */ } else if ((ft & VT_TYPE) == VT_SHORT) { b = 0xbf0f; /* movswl */ } else if ((ft & VT_TYPE) == (VT_SHORT | VT_UNSIGNED)) { b = 0xb70f; /* movzwl */ } else { ll = is64_type(ft); b = 0x8b; } if (ll) { gen_modrm64(b, r, fr, sv->sym, fc); } else { orex(ll, fr, r, b); gen_modrm(r, fr, sv->sym, fc); } } else { if (v == VT_CONST) { if (fr & VT_SYM) { #ifdef TCC_TARGET_PE orex(1,0,r,0x8d); o(0x05 + REG_VALUE(r) * 8); /* lea xx(%rip), r */ gen_addrpc32(fr, sv->sym, fc); #else if (sv->sym->type.t & VT_STATIC) { orex(1,0,r,0x8d); o(0x05 + REG_VALUE(r) * 8); /* lea xx(%rip), r */ gen_addrpc32(fr, sv->sym, fc); } else { orex(1,0,r,0x8b); o(0x05 + REG_VALUE(r) * 8); /* mov xx(%rip), r */ gen_gotpcrel(fr, sv->sym, fc); } #endif } else if (is64_type(ft)) { orex(1,r,0, 0xb8 + REG_VALUE(r)); /* mov $xx, r */ gen_le64(sv->c.ull); } else { orex(0,r,0, 0xb8 + REG_VALUE(r)); /* mov $xx, r */ gen_le32(fc); } } else if (v == VT_LOCAL) { orex(1,0,r,0x8d); /* lea xxx(%ebp), r */ gen_modrm(r, VT_LOCAL, sv->sym, fc); } else if (v == VT_CMP) { orex(0,r,0,0); oad(0xb8 + REG_VALUE(r), 0); /* mov $0, r */ orex(0,r,0, 0x0f); /* setxx %br */ o(fc); o(0xc0 + REG_VALUE(r)); } else if (v == VT_JMP || v == VT_JMPI) { t = v & 1; orex(0,r,0,0); oad(0xb8 + REG_VALUE(r), t); /* mov $1, r */ o(0x05eb + (REX_BASE(r) << 8)); /* jmp after */ gsym(fc); orex(0,r,0,0); oad(0xb8 + REG_VALUE(r), t ^ 1); /* mov $0, r */ } else if (v != r) { if (r == TREG_XMM0) { assert(v == TREG_ST0); /* gen_cvt_ftof(VT_DOUBLE); */ o(0xf0245cdd); /* fstpl -0x10(%rsp) */ /* movsd -0x10(%rsp),%xmm0 */ o(0x44100ff2); o(0xf024); } else if (r == TREG_ST0) { assert(v == TREG_XMM0); /* gen_cvt_ftof(VT_LDOUBLE); */ /* movsd %xmm0,-0x10(%rsp) */ o(0x44110ff2); o(0xf024); o(0xf02444dd); /* fldl -0x10(%rsp) */ } else { orex(1,r,v, 0x89); o(0xc0 + REG_VALUE(r) + REG_VALUE(v) * 8); /* mov v, r */ } } } } /* store register 'r' in lvalue 'v' */ void store(int r, SValue *v) { int fr, bt, ft, fc; int op64 = 0; /* store the REX prefix in this variable when PIC is enabled */ int pic = 0; #ifdef TCC_TARGET_PE SValue v2; v = pe_getimport(v, &v2); #endif ft = v->type.t; fc = v->c.ul; fr = v->r & VT_VALMASK; bt = ft & VT_BTYPE; #ifndef TCC_TARGET_PE /* we need to access the variable via got */ if (fr == VT_CONST && (v->r & VT_SYM)) { /* mov xx(%rip), %r11 */ o(0x1d8b4c); gen_gotpcrel(TREG_R11, v->sym, v->c.ul); pic = is64_type(bt) ? 0x49 : 0x41; } #endif /* XXX: incorrect if float reg to reg */ if (bt == VT_FLOAT) { o(0x66); o(pic); o(0x7e0f); /* movd */ r = 0; } else if (bt == VT_DOUBLE) { o(0x66); o(pic); o(0xd60f); /* movq */ r = 0; } else if (bt == VT_LDOUBLE) { o(0xc0d9); /* fld %st(0) */ o(pic); o(0xdb); /* fstpt */ r = 7; } else { if (bt == VT_SHORT) o(0x66); o(pic); if (bt == VT_BYTE || bt == VT_BOOL) orex(0, 0, r, 0x88); else if (is64_type(bt)) op64 = 0x89; else orex(0, 0, r, 0x89); } if (pic) { /* xxx r, (%r11) where xxx is mov, movq, fld, or etc */ if (op64) o(op64); o(3 + (r << 3)); } else if (op64) { if (fr == VT_CONST || fr == VT_LOCAL || (v->r & VT_LVAL)) { gen_modrm64(op64, r, v->r, v->sym, fc); } else if (fr != r) { /* XXX: don't we really come here? */ abort(); o(0xc0 + fr + r * 8); /* mov r, fr */ } } else { if (fr == VT_CONST || fr == VT_LOCAL || (v->r & VT_LVAL)) { gen_modrm(r, v->r, v->sym, fc); } else if (fr != r) { /* XXX: don't we really come here? */ abort(); o(0xc0 + fr + r * 8); /* mov r, fr */ } } } /* 'is_jmp' is '1' if it is a jump */ static void gcall_or_jmp(int is_jmp) { int r; if ((vtop->r & (VT_VALMASK | VT_LVAL)) == VT_CONST) { /* constant case */ if (vtop->r & VT_SYM) { /* relocation case */ greloc(cur_text_section, vtop->sym, ind + 1, R_X86_64_PC32); } else { /* put an empty PC32 relocation */ put_elf_reloc(symtab_section, cur_text_section, ind + 1, R_X86_64_PC32, 0); } oad(0xe8 + is_jmp, vtop->c.ul - 4); /* call/jmp im */ } else { /* otherwise, indirect call */ r = TREG_R11; load(r, vtop); o(0x41); /* REX */ o(0xff); /* call/jmp *r */ o(0xd0 + REG_VALUE(r) + (is_jmp << 4)); } } #ifdef TCC_TARGET_PE #define REGN 4 static const uint8_t arg_regs[] = { TREG_RCX, TREG_RDX, TREG_R8, TREG_R9 }; static int func_scratch; /* Generate function call. The function address is pushed first, then all the parameters in call order. This functions pops all the parameters and the function address. */ void gen_offs_sp(int b, int r, int d) { orex(1,0,r & 0x100 ? 0 : r, b); if (d == (char)d) { o(0x2444 | (REG_VALUE(r) << 3)); g(d); } else { o(0x2484 | (REG_VALUE(r) << 3)); gen_le32(d); } } void gfunc_call(int nb_args) { int size, align, r, args_size, i, d, j, bt; int nb_reg_args, gen_reg; /* calculate the number of integer/float arguments */ nb_reg_args = 0; for(i = 0; i < nb_args; i++) { bt = (vtop[-i].type.t & VT_BTYPE); if (bt != VT_STRUCT && bt != VT_LDOUBLE) nb_reg_args++; } args_size = (nb_reg_args < REGN ? REGN : nb_reg_args) * PTR_SIZE; /* for struct arguments, we need to call memcpy and the function call breaks register passing arguments we are preparing. So, we process arguments which will be passed by stack first. */ for(i = 0; i < nb_args; i++) { SValue *sv = &vtop[-i]; bt = (sv->type.t & VT_BTYPE); if (bt == VT_STRUCT) { size = type_size(&sv->type, &align); /* align to stack align size */ size = (size + 15) & ~16; /* generate structure store */ r = get_reg(RC_INT); gen_offs_sp(0x8d, r, args_size); args_size += size; /* generate memcpy call */ vset(&sv->type, r | VT_LVAL, 0); vpushv(sv); vstore(); --vtop; } else if (bt == VT_LDOUBLE) { gv(RC_ST0); gen_offs_sp(0xdb, 0x107, args_size); args_size += 16; } } if (func_scratch < args_size) func_scratch = args_size; for (i = 0; i < REGN; ++i) save_reg(arg_regs[i]); gen_reg = nb_reg_args; for(i = 0; i < nb_args; i++) { bt = (vtop->type.t & VT_BTYPE); if (bt == VT_STRUCT || bt == VT_LDOUBLE) { ; /* done */ } else if (is_sse_float(vtop->type.t)) { gv(RC_FLOAT); /* only one float register */ j = --gen_reg; if (j >= REGN) { /* movq %xmm0, j*8(%rsp) */ gen_offs_sp(0xd60f66, 0x100, j*8); } else { /* movaps %xmm0, %xmmN */ o(0x280f); o(0xc0 + (j << 3)); d = arg_regs[j]; /* mov %xmm0, %rxx */ o(0x66); orex(1,d,0, 0x7e0f); o(0xc0 + REG_VALUE(d)); } } else { j = --gen_reg; if (j >= REGN) { r = gv(RC_INT); gen_offs_sp(0x89, r, j*8); } else { d = arg_regs[j]; if (d < NB_REGS) { gv(reg_classes[d] & ~RC_INT); } else { r = gv(RC_INT); if (d != r) { orex(1,d,r, 0x89); o(0xc0 + REG_VALUE(d) + REG_VALUE(r) * 8); } } } } vtop--; } save_regs(0); gcall_or_jmp(0); vtop--; } #define FUNC_PROLOG_SIZE 11 /* generate function prolog of type 't' */ void gfunc_prolog(CType *func_type) { int addr, align, size, reg_param_index, bt; Sym *sym; CType *type; func_ret_sub = 0; func_scratch = 0; loc = 0; addr = PTR_SIZE * 2; ind += FUNC_PROLOG_SIZE; func_sub_sp_offset = ind; reg_param_index = 0; sym = func_type->ref; /* if the function returns a structure, then add an implicit pointer parameter */ func_vt = sym->type; if ((func_vt.t & VT_BTYPE) == VT_STRUCT) { gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr); reg_param_index++; addr += PTR_SIZE; } /* define parameters */ while ((sym = sym->next) != NULL) { type = &sym->type; bt = type->t & VT_BTYPE; if (bt == VT_STRUCT || bt == VT_LDOUBLE) continue; if (reg_param_index < REGN) { /* save arguments passed by register */ gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr); } sym_push(sym->v & ~SYM_FIELD, type, VT_LOCAL | VT_LVAL, addr); reg_param_index++; addr += PTR_SIZE; } while (reg_param_index < REGN) { if (func_type->ref->c == FUNC_ELLIPSIS) gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr); reg_param_index++; addr += PTR_SIZE; } sym = func_type->ref; while ((sym = sym->next) != NULL) { type = &sym->type; bt = type->t & VT_BTYPE; if (bt == VT_STRUCT || bt == VT_LDOUBLE) { size = type_size(type, &align); size = (size + 15) & -16; sym_push(sym->v & ~SYM_FIELD, type, VT_LOCAL | VT_LVAL, addr); addr += size; } } } /* generate function epilog */ void gfunc_epilog(void) { int v, saved_ind; o(0xc9); /* leave */ if (func_ret_sub == 0) { o(0xc3); /* ret */ } else { o(0xc2); /* ret n */ g(func_ret_sub); g(func_ret_sub >> 8); } saved_ind = ind; ind = func_sub_sp_offset - FUNC_PROLOG_SIZE; /* align local size to word & save local variables */ v = (func_scratch + -loc + 15) & -16; pe_add_unwind_data(ind, saved_ind, v); if (v >= 4096) { Sym *sym = external_global_sym(TOK___chkstk, &func_old_type, 0); oad(0xb8, v); /* mov stacksize, %eax */ oad(0xe8, -4); /* call __chkstk, (does the stackframe too) */ greloc(cur_text_section, sym, ind-4, R_X86_64_PC32); o(0x90); /* fill for FUNC_PROLOG_SIZE = 11 bytes */ } else { o(0xe5894855); /* push %rbp, mov %rsp, %rbp */ o(0xec8148); /* sub rsp, stacksize */ gen_le32(v); } ind = saved_ind; } #else static void gadd_sp(int val) { if (val == (char)val) { o(0xc48348); g(val); } else { oad(0xc48148, val); /* add $xxx, %rsp */ } } #define REGN 6 static const uint8_t arg_regs[REGN] = { TREG_RDI, TREG_RSI, TREG_RDX, TREG_RCX, TREG_R8, TREG_R9 }; /* Generate function call. The function address is pushed first, then all the parameters in call order. This functions pops all the parameters and the function address. */ void gfunc_call(int nb_args) { int size, align, r, args_size, i; SValue *orig_vtop; int nb_reg_args = 0; int nb_sse_args = 0; int sse_reg, gen_reg; /* calculate the number of integer/float arguments */ args_size = 0; for(i = 0; i < nb_args; i++) { if ((vtop[-i].type.t & VT_BTYPE) == VT_STRUCT) { args_size += type_size(&vtop[-i].type, &align); args_size = (args_size + 3) & ~3; } else if ((vtop[-i].type.t & VT_BTYPE) == VT_LDOUBLE) { args_size += 16; } else if (is_sse_float(vtop[-i].type.t)) { nb_sse_args++; if (nb_sse_args > 8) args_size += 8; } else { nb_reg_args++; if (nb_reg_args > REGN) args_size += 8; } } /* for struct arguments, we need to call memcpy and the function call breaks register passing arguments we are preparing. So, we process arguments which will be passed by stack first. */ orig_vtop = vtop; gen_reg = nb_reg_args; sse_reg = nb_sse_args; /* adjust stack to align SSE boundary */ if (args_size &= 15) { /* fetch cpu flag before the following sub will change the value */ if (vtop >= vstack && (vtop->r & VT_VALMASK) == VT_CMP) gv(RC_INT); args_size = 16 - args_size; o(0x48); oad(0xec81, args_size); /* sub $xxx, %rsp */ } for(i = 0; i < nb_args; i++) { if ((vtop->type.t & VT_BTYPE) == VT_STRUCT) { size = type_size(&vtop->type, &align); /* align to stack align size */ size = (size + 3) & ~3; /* allocate the necessary size on stack */ o(0x48); oad(0xec81, size); /* sub $xxx, %rsp */ /* generate structure store */ r = get_reg(RC_INT); orex(1, r, 0, 0x89); /* mov %rsp, r */ o(0xe0 + REG_VALUE(r)); { /* following code breaks vtop[1], vtop[2], and vtop[3] */ SValue tmp1 = vtop[1]; SValue tmp2 = vtop[2]; SValue tmp3 = vtop[3]; vset(&vtop->type, r | VT_LVAL, 0); vswap(); vstore(); vtop[1] = tmp1; vtop[2] = tmp2; vtop[3] = tmp3; } args_size += size; } else if ((vtop->type.t & VT_BTYPE) == VT_LDOUBLE) { gv(RC_ST0); size = LDOUBLE_SIZE; oad(0xec8148, size); /* sub $xxx, %rsp */ o(0x7cdb); /* fstpt 0(%rsp) */ g(0x24); g(0x00); args_size += size; } else if (is_sse_float(vtop->type.t)) { int j = --sse_reg; if (j >= 8) { gv(RC_FLOAT); o(0x50); /* push $rax */ /* movq %xmm0, (%rsp) */ o(0x04d60f66); o(0x24); args_size += 8; } } else { int j = --gen_reg; /* simple type */ /* XXX: implicit cast ? */ if (j >= REGN) { r = gv(RC_INT); orex(0,r,0,0x50 + REG_VALUE(r)); /* push r */ args_size += 8; } } vtop--; } vtop = orig_vtop; save_regs(0); /* save used temporary registers */ /* then, we prepare register passing arguments. Note that we cannot set RDX and RCX in this loop because gv() may break these temporary registers. Let's use R10 and R11 instead of them */ gen_reg = nb_reg_args; sse_reg = nb_sse_args; for(i = 0; i < nb_args; i++) { if ((vtop->type.t & VT_BTYPE) == VT_STRUCT || (vtop->type.t & VT_BTYPE) == VT_LDOUBLE) { } else if (is_sse_float(vtop->type.t)) { int j = --sse_reg; if (j < 8) { gv(RC_FLOAT); /* only one float register */ /* movaps %xmm0, %xmmN */ o(0x280f); o(0xc0 + (sse_reg << 3)); } } else { int j = --gen_reg; /* simple type */ /* XXX: implicit cast ? */ if (j < REGN) { int d = arg_regs[j]; r = gv(RC_INT); if (j == 2 || j == 3) /* j=2: r10, j=3: r11 */ d = j + 8; orex(1,d,r,0x89); /* mov */ o(0xc0 + REG_VALUE(r) * 8 + REG_VALUE(d)); } } vtop--; } /* Copy R10 and R11 into RDX and RCX, respectively */ if (nb_reg_args > 2) { o(0xd2894c); /* mov %r10, %rdx */ if (nb_reg_args > 3) { o(0xd9894c); /* mov %r11, %rcx */ } } oad(0xb8, nb_sse_args < 8 ? nb_sse_args : 8); /* mov nb_sse_args, %eax */ gcall_or_jmp(0); if (args_size) gadd_sp(args_size); vtop--; } #define FUNC_PROLOG_SIZE 11 static void push_arg_reg(int i) { loc -= 8; gen_modrm64(0x89, arg_regs[i], VT_LOCAL, NULL, loc); } /* generate function prolog of type 't' */ void gfunc_prolog(CType *func_type) { int i, addr, align, size; int param_index, param_addr, reg_param_index, sse_param_index; Sym *sym; CType *type; sym = func_type->ref; addr = PTR_SIZE * 2; loc = 0; ind += FUNC_PROLOG_SIZE; func_sub_sp_offset = ind; func_ret_sub = 0; if (func_type->ref->c == FUNC_ELLIPSIS) { int seen_reg_num, seen_sse_num, seen_stack_size; seen_reg_num = seen_sse_num = 0; /* frame pointer and return address */ seen_stack_size = PTR_SIZE * 2; /* count the number of seen parameters */ sym = func_type->ref; while ((sym = sym->next) != NULL) { type = &sym->type; if (is_sse_float(type->t)) { if (seen_sse_num < 8) { seen_sse_num++; } else { seen_stack_size += 8; } } else if ((type->t & VT_BTYPE) == VT_STRUCT) { size = type_size(type, &align); size = (size + 3) & ~3; seen_stack_size += size; } else if ((type->t & VT_BTYPE) == VT_LDOUBLE) { seen_stack_size += LDOUBLE_SIZE; } else { if (seen_reg_num < REGN) { seen_reg_num++; } else { seen_stack_size += 8; } } } loc -= 16; /* movl $0x????????, -0x10(%rbp) */ o(0xf045c7); gen_le32(seen_reg_num * 8); /* movl $0x????????, -0xc(%rbp) */ o(0xf445c7); gen_le32(seen_sse_num * 16 + 48); /* movl $0x????????, -0x8(%rbp) */ o(0xf845c7); gen_le32(seen_stack_size); /* save all register passing arguments */ for (i = 0; i < 8; i++) { loc -= 16; o(0xd60f66); /* movq */ gen_modrm(7 - i, VT_LOCAL, NULL, loc); /* movq $0, loc+8(%rbp) */ o(0x85c748); gen_le32(loc + 8); gen_le32(0); } for (i = 0; i < REGN; i++) { push_arg_reg(REGN-1-i); } } sym = func_type->ref; param_index = 0; reg_param_index = 0; sse_param_index = 0; /* if the function returns a structure, then add an implicit pointer parameter */ func_vt = sym->type; if ((func_vt.t & VT_BTYPE) == VT_STRUCT) { push_arg_reg(reg_param_index); param_addr = loc; func_vc = loc; param_index++; reg_param_index++; } /* define parameters */ while ((sym = sym->next) != NULL) { type = &sym->type; size = type_size(type, &align); size = (size + 3) & ~3; if (is_sse_float(type->t)) { if (sse_param_index < 8) { /* save arguments passed by register */ loc -= 8; o(0xd60f66); /* movq */ gen_modrm(sse_param_index, VT_LOCAL, NULL, loc); param_addr = loc; } else { param_addr = addr; addr += size; } sse_param_index++; } else if ((type->t & VT_BTYPE) == VT_STRUCT || (type->t & VT_BTYPE) == VT_LDOUBLE) { param_addr = addr; addr += size; } else { if (reg_param_index < REGN) { /* save arguments passed by register */ push_arg_reg(reg_param_index); param_addr = loc; } else { param_addr = addr; addr += 8; } reg_param_index++; } sym_push(sym->v & ~SYM_FIELD, type, VT_LOCAL | VT_LVAL, param_addr); param_index++; } } /* generate function epilog */ void gfunc_epilog(void) { int v, saved_ind; o(0xc9); /* leave */ if (func_ret_sub == 0) { o(0xc3); /* ret */ } else { o(0xc2); /* ret n */ g(func_ret_sub); g(func_ret_sub >> 8); } /* align local size to word & save local variables */ v = (-loc + 15) & -16; saved_ind = ind; ind = func_sub_sp_offset - FUNC_PROLOG_SIZE; o(0xe5894855); /* push %rbp, mov %rsp, %rbp */ o(0xec8148); /* sub rsp, stacksize */ gen_le32(v); ind = saved_ind; } #endif /* not PE */ /* generate a jump to a label */ int gjmp(int t) { return psym(0xe9, t); } /* generate a jump to a fixed address */ void gjmp_addr(int a) { int r; r = a - ind - 2; if (r == (char)r) { g(0xeb); g(r); } else { oad(0xe9, a - ind - 5); } } /* generate a test. set 'inv' to invert test. Stack entry is popped */ int gtst(int inv, int t) { int v, *p; v = vtop->r & VT_VALMASK; if (v == VT_CMP) { /* fast case : can jump directly since flags are set */ g(0x0f); t = psym((vtop->c.i - 16) ^ inv, t); } else if (v == VT_JMP || v == VT_JMPI) { /* && or || optimization */ if ((v & 1) == inv) { /* insert vtop->c jump list in t */ p = &vtop->c.i; while (*p != 0) p = (int *)(cur_text_section->data + *p); *p = t; t = vtop->c.i; } else { t = gjmp(t); gsym(vtop->c.i); } } else { if (is_float(vtop->type.t) || (vtop->type.t & VT_BTYPE) == VT_LLONG) { vpushi(0); gen_op(TOK_NE); } if ((vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST) { /* constant jmp optimization */ if ((vtop->c.i != 0) != inv) t = gjmp(t); } else { v = gv(RC_INT); orex(0,v,v,0x85); o(0xc0 + REG_VALUE(v) * 9); g(0x0f); t = psym(0x85 ^ inv, t); } } vtop--; return t; } /* generate an integer binary operation */ void gen_opi(int op) { int r, fr, opc, c; int ll, uu, cc; ll = is64_type(vtop[-1].type.t); uu = (vtop[-1].type.t & VT_UNSIGNED) != 0; cc = (vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST; switch(op) { case '+': case TOK_ADDC1: /* add with carry generation */ opc = 0; gen_op8: if (cc && (!ll || (int)vtop->c.ll == vtop->c.ll)) { /* constant case */ vswap(); r = gv(RC_INT); vswap(); c = vtop->c.i; if (c == (char)c) { /* XXX: generate inc and dec for smaller code ? */ orex(ll, r, 0, 0x83); o(0xc0 | (opc << 3) | REG_VALUE(r)); g(c); } else { orex(ll, r, 0, 0x81); oad(0xc0 | (opc << 3) | REG_VALUE(r), c); } } else { gv2(RC_INT, RC_INT); r = vtop[-1].r; fr = vtop[0].r; orex(ll, r, fr, (opc << 3) | 0x01); o(0xc0 + REG_VALUE(r) + REG_VALUE(fr) * 8); } vtop--; if (op >= TOK_ULT && op <= TOK_GT) { vtop->r = VT_CMP; vtop->c.i = op; } break; case '-': case TOK_SUBC1: /* sub with carry generation */ opc = 5; goto gen_op8; case TOK_ADDC2: /* add with carry use */ opc = 2; goto gen_op8; case TOK_SUBC2: /* sub with carry use */ opc = 3; goto gen_op8; case '&': opc = 4; goto gen_op8; case '^': opc = 6; goto gen_op8; case '|': opc = 1; goto gen_op8; case '*': gv2(RC_INT, RC_INT); r = vtop[-1].r; fr = vtop[0].r; orex(ll, fr, r, 0xaf0f); /* imul fr, r */ o(0xc0 + REG_VALUE(fr) + REG_VALUE(r) * 8); vtop--; break; case TOK_SHL: opc = 4; goto gen_shift; case TOK_SHR: opc = 5; goto gen_shift; case TOK_SAR: opc = 7; gen_shift: opc = 0xc0 | (opc << 3); if (cc) { /* constant case */ vswap(); r = gv(RC_INT); vswap(); orex(ll, r, 0, 0xc1); /* shl/shr/sar $xxx, r */ o(opc | REG_VALUE(r)); g(vtop->c.i & (ll ? 63 : 31)); } else { /* we generate the shift in ecx */ gv2(RC_INT, RC_RCX); r = vtop[-1].r; orex(ll, r, 0, 0xd3); /* shl/shr/sar %cl, r */ o(opc | REG_VALUE(r)); } vtop--; break; case TOK_UDIV: case TOK_UMOD: uu = 1; goto divmod; case '/': case '%': case TOK_PDIV: uu = 0; divmod: /* first operand must be in eax */ /* XXX: need better constraint for second operand */ gv2(RC_RAX, RC_RCX); r = vtop[-1].r; fr = vtop[0].r; vtop--; save_reg(TREG_RDX); orex(ll, 0, 0, uu ? 0xd231 : 0x99); /* xor %edx,%edx : cqto */ orex(ll, fr, 0, 0xf7); /* div fr, %eax */ o((uu ? 0xf0 : 0xf8) + REG_VALUE(fr)); if (op == '%' || op == TOK_UMOD) r = TREG_RDX; else r = TREG_RAX; vtop->r = r; break; default: opc = 7; goto gen_op8; } } void gen_opl(int op) { gen_opi(op); } /* generate a floating point operation 'v = t1 op t2' instruction. The two operands are guaranted to have the same floating point type */ /* XXX: need to use ST1 too */ void gen_opf(int op) { int a, ft, fc, swapped, r; int float_type = (vtop->type.t & VT_BTYPE) == VT_LDOUBLE ? RC_ST0 : RC_FLOAT; /* convert constants to memory references */ if ((vtop[-1].r & (VT_VALMASK | VT_LVAL)) == VT_CONST) { vswap(); gv(float_type); vswap(); } if ((vtop[0].r & (VT_VALMASK | VT_LVAL)) == VT_CONST) gv(float_type); /* must put at least one value in the floating point register */ if ((vtop[-1].r & VT_LVAL) && (vtop[0].r & VT_LVAL)) { vswap(); gv(float_type); vswap(); } swapped = 0; /* swap the stack if needed so that t1 is the register and t2 is the memory reference */ if (vtop[-1].r & VT_LVAL) { vswap(); swapped = 1; } if ((vtop->type.t & VT_BTYPE) == VT_LDOUBLE) { if (op >= TOK_ULT && op <= TOK_GT) { /* load on stack second operand */ load(TREG_ST0, vtop); save_reg(TREG_RAX); /* eax is used by FP comparison code */ if (op == TOK_GE || op == TOK_GT) swapped = !swapped; else if (op == TOK_EQ || op == TOK_NE) swapped = 0; if (swapped) o(0xc9d9); /* fxch %st(1) */ o(0xe9da); /* fucompp */ o(0xe0df); /* fnstsw %ax */ if (op == TOK_EQ) { o(0x45e480); /* and $0x45, %ah */ o(0x40fC80); /* cmp $0x40, %ah */ } else if (op == TOK_NE) { o(0x45e480); /* and $0x45, %ah */ o(0x40f480); /* xor $0x40, %ah */ op = TOK_NE; } else if (op == TOK_GE || op == TOK_LE) { o(0x05c4f6); /* test $0x05, %ah */ op = TOK_EQ; } else { o(0x45c4f6); /* test $0x45, %ah */ op = TOK_EQ; } vtop--; vtop->r = VT_CMP; vtop->c.i = op; } else { /* no memory reference possible for long double operations */ load(TREG_ST0, vtop); swapped = !swapped; switch(op) { default: case '+': a = 0; break; case '-': a = 4; if (swapped) a++; break; case '*': a = 1; break; case '/': a = 6; if (swapped) a++; break; } ft = vtop->type.t; fc = vtop->c.ul; o(0xde); /* fxxxp %st, %st(1) */ o(0xc1 + (a << 3)); vtop--; } } else { if (op >= TOK_ULT && op <= TOK_GT) { /* if saved lvalue, then we must reload it */ r = vtop->r; fc = vtop->c.ul; if ((r & VT_VALMASK) == VT_LLOCAL) { SValue v1; r = get_reg(RC_INT); v1.type.t = VT_INT; v1.r = VT_LOCAL | VT_LVAL; v1.c.ul = fc; load(r, &v1); fc = 0; } if (op == TOK_EQ || op == TOK_NE) { swapped = 0; } else { if (op == TOK_LE || op == TOK_LT) swapped = !swapped; if (op == TOK_LE || op == TOK_GE) { op = 0x93; /* setae */ } else { op = 0x97; /* seta */ } } if (swapped) { o(0x7e0ff3); /* movq */ gen_modrm(1, r, vtop->sym, fc); if ((vtop->type.t & VT_BTYPE) == VT_DOUBLE) { o(0x66); } o(0x2e0f); /* ucomisd %xmm0, %xmm1 */ o(0xc8); } else { if ((vtop->type.t & VT_BTYPE) == VT_DOUBLE) { o(0x66); } o(0x2e0f); /* ucomisd */ gen_modrm(0, r, vtop->sym, fc); } vtop--; vtop->r = VT_CMP; vtop->c.i = op; } else { /* no memory reference possible for long double operations */ if ((vtop->type.t & VT_BTYPE) == VT_LDOUBLE) { load(TREG_XMM0, vtop); swapped = !swapped; } switch(op) { default: case '+': a = 0; break; case '-': a = 4; break; case '*': a = 1; break; case '/': a = 6; break; } ft = vtop->type.t; fc = vtop->c.ul; if ((ft & VT_BTYPE) == VT_LDOUBLE) { o(0xde); /* fxxxp %st, %st(1) */ o(0xc1 + (a << 3)); } else { /* if saved lvalue, then we must reload it */ r = vtop->r; if ((r & VT_VALMASK) == VT_LLOCAL) { SValue v1; r = get_reg(RC_INT); v1.type.t = VT_INT; v1.r = VT_LOCAL | VT_LVAL; v1.c.ul = fc; load(r, &v1); fc = 0; } if (swapped) { /* movq %xmm0,%xmm1 */ o(0x7e0ff3); o(0xc8); load(TREG_XMM0, vtop); /* subsd %xmm1,%xmm0 (f2 0f 5c c1) */ if ((ft & VT_BTYPE) == VT_DOUBLE) { o(0xf2); } else { o(0xf3); } o(0x0f); o(0x58 + a); o(0xc1); } else { if ((ft & VT_BTYPE) == VT_DOUBLE) { o(0xf2); } else { o(0xf3); } o(0x0f); o(0x58 + a); gen_modrm(0, r, vtop->sym, fc); } } vtop--; } } } /* convert integers to fp 't' type. Must handle 'int', 'unsigned int' and 'long long' cases. */ void gen_cvt_itof(int t) { if ((t & VT_BTYPE) == VT_LDOUBLE) { save_reg(TREG_ST0); gv(RC_INT); if ((vtop->type.t & VT_BTYPE) == VT_LLONG) { /* signed long long to float/double/long double (unsigned case is handled generically) */ o(0x50 + (vtop->r & VT_VALMASK)); /* push r */ o(0x242cdf); /* fildll (%rsp) */ o(0x08c48348); /* add $8, %rsp */ } else if ((vtop->type.t & (VT_BTYPE | VT_UNSIGNED)) == (VT_INT | VT_UNSIGNED)) { /* unsigned int to float/double/long double */ o(0x6a); /* push $0 */ g(0x00); o(0x50 + (vtop->r & VT_VALMASK)); /* push r */ o(0x242cdf); /* fildll (%rsp) */ o(0x10c48348); /* add $16, %rsp */ } else { /* int to float/double/long double */ o(0x50 + (vtop->r & VT_VALMASK)); /* push r */ o(0x2404db); /* fildl (%rsp) */ o(0x08c48348); /* add $8, %rsp */ } vtop->r = TREG_ST0; } else { save_reg(TREG_XMM0); gv(RC_INT); o(0xf2 + ((t & VT_BTYPE) == VT_FLOAT)); if ((vtop->type.t & (VT_BTYPE | VT_UNSIGNED)) == (VT_INT | VT_UNSIGNED) || (vtop->type.t & VT_BTYPE) == VT_LLONG) { o(0x48); /* REX */ } o(0x2a0f); o(0xc0 + (vtop->r & VT_VALMASK)); /* cvtsi2sd */ vtop->r = TREG_XMM0; } } /* convert from one floating point type to another */ void gen_cvt_ftof(int t) { int ft, bt, tbt; ft = vtop->type.t; bt = ft & VT_BTYPE; tbt = t & VT_BTYPE; if (bt == VT_FLOAT) { gv(RC_FLOAT); if (tbt == VT_DOUBLE) { o(0xc0140f); /* unpcklps */ o(0xc05a0f); /* cvtps2pd */ } else if (tbt == VT_LDOUBLE) { /* movss %xmm0,-0x10(%rsp) */ o(0x44110ff3); o(0xf024); o(0xf02444d9); /* flds -0x10(%rsp) */ vtop->r = TREG_ST0; } } else if (bt == VT_DOUBLE) { gv(RC_FLOAT); if (tbt == VT_FLOAT) { o(0xc0140f66); /* unpcklpd */ o(0xc05a0f66); /* cvtpd2ps */ } else if (tbt == VT_LDOUBLE) { /* movsd %xmm0,-0x10(%rsp) */ o(0x44110ff2); o(0xf024); o(0xf02444dd); /* fldl -0x10(%rsp) */ vtop->r = TREG_ST0; } } else { gv(RC_ST0); if (tbt == VT_DOUBLE) { o(0xf0245cdd); /* fstpl -0x10(%rsp) */ /* movsd -0x10(%rsp),%xmm0 */ o(0x44100ff2); o(0xf024); vtop->r = TREG_XMM0; } else if (tbt == VT_FLOAT) { o(0xf0245cd9); /* fstps -0x10(%rsp) */ /* movss -0x10(%rsp),%xmm0 */ o(0x44100ff3); o(0xf024); vtop->r = TREG_XMM0; } } } /* convert fp to int 't' type */ void gen_cvt_ftoi(int t) { int ft, bt, size, r; ft = vtop->type.t; bt = ft & VT_BTYPE; if (bt == VT_LDOUBLE) { gen_cvt_ftof(VT_DOUBLE); bt = VT_DOUBLE; } gv(RC_FLOAT); if (t != VT_INT) size = 8; else size = 4; r = get_reg(RC_INT); if (bt == VT_FLOAT) { o(0xf3); } else if (bt == VT_DOUBLE) { o(0xf2); } else { assert(0); } orex(size == 8, r, 0, 0x2c0f); /* cvttss2si or cvttsd2si */ o(0xc0 + (REG_VALUE(r) << 3)); vtop->r = r; } /* computed goto support */ void ggoto(void) { gcall_or_jmp(1); vtop--; } /* end of x86-64 code generator */ /*************************************************************/ #endif /* ! TARGET_DEFS_ONLY */ /******************************************************/