/*************************************************************/ /* * RISCV64 assembler for TCC * */ #ifdef TARGET_DEFS_ONLY #define CONFIG_TCC_ASM #define NB_ASM_REGS 32 ST_FUNC void g(int c); ST_FUNC void gen_le16(int c); ST_FUNC void gen_le32(int c); /*************************************************************/ #else /*************************************************************/ #define USING_GLOBALS #include "tcc.h" /* XXX: make it faster ? */ ST_FUNC void g(int c) { int ind1; if (nocode_wanted) return; ind1 = ind + 1; if (ind1 > cur_text_section->data_allocated) section_realloc(cur_text_section, ind1); cur_text_section->data[ind] = c; ind = ind1; } ST_FUNC void gen_le16 (int i) { g(i); g(i>>8); } ST_FUNC void gen_le32 (int i) { gen_le16(i); gen_le16(i>>16); } ST_FUNC void gen_expr32(ExprValue *pe) { gen_le32(pe->v); } static void asm_emit_opcode(uint32_t opcode) { gen_le32(opcode); } static void asm_nullary_opcode(TCCState *s1, int token) { switch (token) { // Sync instructions case TOK_ASM_fence: // I asm_emit_opcode((0x3 << 2) | 3 | (0 << 12)); return; case TOK_ASM_fence_i: // I asm_emit_opcode((0x3 << 2) | 3| (1 << 12)); return; // System calls case TOK_ASM_scall: // I (pseudo) asm_emit_opcode((0x1C << 2) | 3 | (0 << 12)); return; case TOK_ASM_sbreak: // I (pseudo) asm_emit_opcode((0x1C << 2) | 3 | (0 << 12) | (1 << 20)); return; // Privileged Instructions case TOK_ASM_ecall: asm_emit_opcode((0x1C << 2) | 3 | (0 << 20)); return; case TOK_ASM_ebreak: asm_emit_opcode((0x1C << 2) | 3 | (1 << 20)); return; // Other case TOK_ASM_wfi: asm_emit_opcode((0x1C << 2) | 3 | (0x105 << 20)); return; default: expect("nullary instruction"); } } enum { OPT_REG, OPT_IM12S, OPT_IM32, }; #define OP_REG (1 << OPT_REG) #define OP_IM32 (1 << OPT_IM32) #define OP_IM12S (1 << OPT_IM12S) typedef struct Operand { uint32_t type; union { uint8_t reg; uint16_t regset; ExprValue e; }; } Operand; /* Parse a text containing operand and store the result in OP */ static void parse_operand(TCCState *s1, Operand *op) { ExprValue e; int8_t reg; op->type = 0; if ((reg = asm_parse_regvar(tok)) != -1) { next(); // skip register name op->type = OP_REG; op->reg = (uint8_t) reg; return; } else if (tok == '$') { /* constant value */ next(); // skip '#' or '$' } asm_expr(s1, &e); op->type = OP_IM32; op->e = e; if (!op->e.sym) { if ((int) op->e.v >= -2048 && (int) op->e.v < 2048) op->type = OP_IM12S; } else expect("operand"); } #define ENCODE_RS1(register_index) ((register_index) << 15) #define ENCODE_RS2(register_index) ((register_index) << 20) #define ENCODE_RD(register_index) ((register_index) << 7) // Note: Those all map to CSR--so they are pseudo-instructions. static void asm_unary_opcode(TCCState *s1, int token) { uint32_t opcode = (0x1C << 2) | 3 | (2 << 12); Operand op; parse_operand(s1, &op); if (op.type != OP_REG) { expect("register"); return; } opcode |= ENCODE_RD(op.reg); switch (token) { case TOK_ASM_rdcycle: asm_emit_opcode(opcode | (0xC00 << 20)); return; case TOK_ASM_rdcycleh: asm_emit_opcode(opcode | (0xC80 << 20)); return; case TOK_ASM_rdtime: asm_emit_opcode(opcode | (0xC01 << 20) | ENCODE_RD(op.reg)); return; case TOK_ASM_rdtimeh: asm_emit_opcode(opcode | (0xC81 << 20) | ENCODE_RD(op.reg)); return; case TOK_ASM_rdinstret: asm_emit_opcode(opcode | (0xC02 << 20) | ENCODE_RD(op.reg)); return; case TOK_ASM_rdinstreth: asm_emit_opcode(opcode | (0xC82 << 20) | ENCODE_RD(op.reg)); return; default: expect("unary instruction"); } } static void asm_emit_u(int token, uint32_t opcode, const Operand* rd, const Operand* rs2) { if (rd->type != OP_REG) { tcc_error("'%s': Expected destination operand that is a register", get_tok_str(token, NULL)); return; } if (rs2->type != OP_IM12S && rs2->type != OP_IM32) { tcc_error("'%s': Expected second source operand that is an immediate value", get_tok_str(token, NULL)); return; } else if (rs2->e.v >= 0x100000) { tcc_error("'%s': Expected second source operand that is an immediate value between 0 and 0xfffff", get_tok_str(token, NULL)); return; } /* U-type instruction: 31...12 imm[31:12] 11...7 rd 6...0 opcode */ gen_le32(opcode | ENCODE_RD(rd->reg) | (rs2->e.v << 12)); } static void asm_binary_opcode(TCCState* s1, int token) { Operand ops[2]; parse_operand(s1, &ops[0]); if (tok == ',') next(); else expect("','"); parse_operand(s1, &ops[1]); switch (token) { case TOK_ASM_lui: asm_emit_u(token, (0xD << 2) | 3, &ops[0], &ops[1]); return; case TOK_ASM_auipc: asm_emit_u(token, (0x05 << 2) | 3, &ops[0], &ops[1]); return; default: expect("binary instruction"); } } ST_FUNC void asm_opcode(TCCState *s1, int token) { switch (token) { case TOK_ASM_fence: case TOK_ASM_fence_i: case TOK_ASM_scall: case TOK_ASM_sbreak: case TOK_ASM_ecall: case TOK_ASM_ebreak: case TOK_ASM_mrts: case TOK_ASM_mrth: case TOK_ASM_hrts: case TOK_ASM_wfi: asm_nullary_opcode(s1, token); return; case TOK_ASM_rdcycle: case TOK_ASM_rdcycleh: case TOK_ASM_rdtime: case TOK_ASM_rdtimeh: case TOK_ASM_rdinstret: case TOK_ASM_rdinstreth: asm_unary_opcode(s1, token); return; case TOK_ASM_lui: case TOK_ASM_auipc: asm_binary_opcode(s1, token); return; default: expect("known instruction"); } } ST_FUNC void subst_asm_operand(CString *add_str, SValue *sv, int modifier) { tcc_error("RISCV64 asm not implemented."); } /* generate prolog and epilog code for asm statement */ ST_FUNC void asm_gen_code(ASMOperand *operands, int nb_operands, int nb_outputs, int is_output, uint8_t *clobber_regs, int out_reg) { } ST_FUNC void asm_compute_constraints(ASMOperand *operands, int nb_operands, int nb_outputs, const uint8_t *clobber_regs, int *pout_reg) { } ST_FUNC void asm_clobber(uint8_t *clobber_regs, const char *str) { tcc_error("RISCV64 asm not implemented."); } ST_FUNC int asm_parse_regvar (int t) { tcc_error("RISCV64 asm not implemented."); return -1; } /*************************************************************/ #endif /* ndef TARGET_DEFS_ONLY */