This avoids 'exit(1)' with errors outside of compilation
(nasty in particular with libtcc usage)
As a sideeffect multiple errors can be seen for linker
errors (such as undefined symbols, relocation errors, ...)
Better avoid global variables, at least in new code.
tccdbg.c hopefully should be logically identical to the
former parts in tccgen/elf.c (s1 tccstate added in some
places)
tccelf.c: dwarf linkage seems special per dwarf rather
than special per target.
The new gcc12 release does not support stabs any more.
This was a good reason to add support for dwarf.
The stabs code still works and is used if configure option --dwarf
is not used.
Tested on x86_64, i386, arm, arm64, riscv64 with dwarf-5.
Some debuggers may not support dwarf-5. Try using older dwarf versions
i that case.
The tccmacho.c code probably need some support for dwarf.
arm-gen.c, arm64-gen.c, i386-gen.c, riscv64-gen.c, x86_64-gen.
- fix get_sym_ref symbol size
arm-link.c, arm64-link.c, i386-link.c, riscv64-link.c, x86_64-link.c
- add R_DATA_32U
libtcc.c:
- parse -gdwarf option
tcc.c:
- add dwarf option
tcc.h:
- add dwarf option and sections
tccelf.c:
- init dwarf sections
- avoid adding sh_addr for dwarf sections
- remove dwarf relocs for output dll
- add dwarf sections for tccrun
tccgen.c:
- add dwarf defines + global data
- add dwarf_* functions
- mix dwarf code with stabs code
- a trick is used to emit function name in .debug_line section so
only this section has to be parsed instead of .debug_info and
.debug_abbrev.
- fix init debug_modes
tccrun.c:
- add dwarf sections in rt_context
- init them in tcc_run
- add new dwarf code rt_printline_dwarf to find file/function
dwarf.h:
- New file
tcc-doc.texi:
- document dwarf
configure:
- add dwarf option
lib/Makefile
- change -gstabs into -gdwarf
lib/bt-exe.c, tests/tests2/Makefile, tests/tests2/126_bound_global:
- Add __bound_init call
- Add new testcase to test it
This allows creation of TCCStates and operation with API
calls independently from each other, even from threads.
Frontend (option parsing/libtcc.c) and backend (linker/tccelf.c)
now depend only on the TCCState (s1) argument.
Compilation per se (tccpp.c, tccgen.c) is still using
globals for convenience. There is only one entry point
to this section which is tcc_compile() which is protected
by a semaphore.
There are some hacks involved to avoid too many changes,
as well as some changes in order to avoid too many hacks ;)
The test libtcc_test_mt.c shows the feature. Except this
new file the patch adds 87 lines overall.
this is enough to let me link a tcctest.c compiled by GCC
using some current debian sid riscv64 system. It needs
linking against libgcc.a for various floating point TFmode
routines. The result runs.
local symbols can be resolved statically, they don't have to be
done dynamically, so this is a slight speedup at load time for
produced executables and shared libs. The musl libc also rejects
any STB_LOCAL symbols for dynamic symbol resolution, so there it
also fixes use of shared libs created by tcc.
The O(xxx) stuff in i386-asm.c had me scratching my head. Extracting
the macro and trying it out in a separate program doesn't give
me any warnings, so I'm confused about what could be going on there.
Any cast will make things happy. I used a uint64_t to catch actual
cases of overflow, which will still cause a -Wconstant-conversion
warning.
Signed-off-by: Andrei Warkentin <andrey.warkentin@gmail.com>
- generate and use SYM@PLT for plt addresses
- get rid of patch_dynsym_undef hack (no idea what it did on FreeBSD)
- use sym_attrs instead of symtab_to_dynsym
- special case for function pointers into .so on i386
- libtcc_test: test tcc_add_symbol with data object
- move target specicic code to *-link.c files
- add R_XXX_RELATIVE (needed for PE)
MSVC does not support array designator so cannot compile source using
relocs_info. This commit replace the relocs_info array into a set of
functions, each returning the value given by a given field of the struct
reloc_info.
Last use for pltoff_addend field of relocs_info array was removed in
commit 25927df3b7. It is now useless so
this commit removes it and all initialization related to it.
i386 target does not have PC relative loads. Its ABI therefore require
ebx register to points to the GOT when executing a PLT entry. This means
that PLT entry cannot be used transparently, the compiler needs to
expect execution of a PLT entry to be able to use one, that is a PLT
entry should only be created if the relocation explicitely asks for it
(eg. R_386_PLT32).
This patch creates a new target macro PCRELATIVE_DLLPLT to indicate
whether a target can do a PC relative load in PLT entry when building a
dynamic library. Executable do not normally pose a problem because they
are loaded at a fixed address and thus the absolute address of GOT can
be used.
Note that in such a case, if the compiler does not use a PLT aware
relocation for external access then the code relocation will fall on the
dynamic loader since there is no PLT entry to relocate too.
C standard specifies that array should be declared with a non null size
or with * for standard array. Declaration of relocs_info in tcc.h was
not respecting this rule. This commit add a R_NUM macro that maps to the
R_<ARCH>_NUM macros and declare relocs_info using it. This commit also
moves all linker-related macros from <arch>-gen.c files to <arch>-link.c
ones.