Better avoid global variables, at least in new code.
tccdbg.c hopefully should be logically identical to the
former parts in tccgen/elf.c (s1 tccstate added in some
places)
tccelf.c: dwarf linkage seems special per dwarf rather
than special per target.
/* Use "-g" as alias for "-g1". Use "-g0" to disable debug */
So not using -g is now the alias for -g0 ?!?
This reverts commit 8759b2581d.
This reverts commit 3ce7bc6efc.
This reverts commit 5fb582ab7f.
This reverts commit aea68dbb40.
This reverts commit fa9c31c3db.
This reverts commit b3bebdb20a.
This reverts commit ecf8e5a00e.
This reverts commit fe6b5c08dc.
This reverts commit e2e5377e7b.
This reverts commit 1cd7998905.
The new gcc12 release does not support stabs any more.
This was a good reason to add support for dwarf.
The stabs code still works and is used if configure option --dwarf
is not used.
Tested on x86_64, i386, arm, arm64, riscv64 with dwarf-5.
Some debuggers may not support dwarf-5. Try using older dwarf versions
i that case.
The tccmacho.c code probably need some support for dwarf.
arm-gen.c, arm64-gen.c, i386-gen.c, riscv64-gen.c, x86_64-gen.
- fix get_sym_ref symbol size
arm-link.c, arm64-link.c, i386-link.c, riscv64-link.c, x86_64-link.c
- add R_DATA_32U
libtcc.c:
- parse -gdwarf option
tcc.c:
- add dwarf option
tcc.h:
- add dwarf option and sections
tccelf.c:
- init dwarf sections
- avoid adding sh_addr for dwarf sections
- remove dwarf relocs for output dll
- add dwarf sections for tccrun
tccgen.c:
- add dwarf defines + global data
- add dwarf_* functions
- mix dwarf code with stabs code
- a trick is used to emit function name in .debug_line section so
only this section has to be parsed instead of .debug_info and
.debug_abbrev.
- fix init debug_modes
tccrun.c:
- add dwarf sections in rt_context
- init them in tcc_run
- add new dwarf code rt_printline_dwarf to find file/function
dwarf.h:
- New file
tcc-doc.texi:
- document dwarf
configure:
- add dwarf option
lib/Makefile
- change -gstabs into -gdwarf
lib/bt-exe.c, tests/tests2/Makefile, tests/tests2/126_bound_global:
- Add __bound_init call
- Add new testcase to test it
The code needs to be fixed: use the functions or remove them.
arm-asm.c:
asm_parse_vfp_regvar()
arm64-link:
gotplt_entry_type()
create_plt_entry()
Signed-off-by: Detlef Riekenberg <wine.dev@web.de>
Currently tcc does not use lazy binding. It puts all relocations in the RELX
section and solve them all at startup.
This was not working on bsd.
tcc.h:
- New RELPLT_SECTION_FMT for plt relocations
- New entry relocplt in struct Section
tccelf.c:
- put_elf_reloca: put R_JMP_SLOT in relocplt section
- build_got_entries*: Use two passes because R_JMP_SLOT and R_GLOB_DAT
can not be intermixed on some targets (arm, arm64)
- layout_sections: Calculate correct size relocplt section for DT_ values.
Make sure relocplt is last
- fill_dynamic: Add DT_ values when got is filled
move DT_VERSYM because dynamic linker cannot handle it standone
- Add note section for NetBSD
arm-link.c/arm64-link.c/i386-link.c/riscv64-link.c/x86_64-link.c:
- fill got table with pointer to plt section or symbol value in case
of TCC_OUTPUT_MEMORY
arm-link.c/arm64-link.c:
- fix offset first plt entry
i386-link.c/x86_64-link.c:
- use correct reloc entry
- use relofs - sizeof (ElfW_Rel) because the reloc is already done
lib/bcheck.c:
- no __libc_freeres on FreeBSD and NetBSD
tests/Makefile:
- Add -fno-stack-protector for OpenBSD
tests/tests2/Makefile:
- disable 106_pthread/114_bound_signal
- tccpe.c: commit "tidy support for helper function" created
STT_NOTYPE symbols and hence relied on ad-hoc detection which
didn't work for x86_64 (as reported by Christian Jullien)
- tccgen.c: However to be more safe the helper symbols are
now made STT_FUNC anyway (via new VT_ASM_FUNC).
Also:
- tcc.h: minor reorder
- riscv64-*, arm64-*, tccmacho.c: avoid some gcc format-warnings
(mingw-gcc complains about "%llx" being "unknown conversion",
although it does work since Vista or so)
Checked on:
- i386/x86_64 (linux/windows)
- arm/arm64 (rapberry pi)
- riscv64 (simulator)
Not tested for arm softfloat because raspberry pi does not support it.
Modifications:
Makefile:
add arm-asm.c to arm64_FILES
add riscv64-asm.c (new file) to riscv64_FILES
lib/Makefile:
add fetch_and_add_arm.o(new file) to ARM_O
add fetch_and_add_arm64.o(new file) to ARM64_O
add fetch_and_add_riscv64.o(new file) to RISCV64_O
add $(BCHECK_O) to OBJ-arm/OBJ-arm64/OBJ-riscv64
tcc.h:
Enable CONFIG_TCC_BCHECK for arm32/arm64/riscv64
Add arm-asm.c, riscv64-asm.c
tcctok.h:
for arm use memmove4 instead of memcpy4
for arm use memmove8 instead of memcpy8
tccgen.c:
put_extern_sym2: for arm check memcpy/memmove/memset/memmove4/memmove8
only use alloca for i386/x86_64
for arm use memmove4 instead of memcpy4
for arm use memmove8 instead of memcpy8
fix builtin_frame_address/builtin_return_address for arm/riscv64
tccrun.c:
Add riscv64 support
fix rt_getcontext/rt_get_caller_pc for arm
tccelf.c:
tcc_load_dll: Print filename for bad architecture
libtcc.c:
add arm-asm.c/riscv64-asm.c
tcc-doc.texi:
Add arm, arm64, riscv64 support for bound checking
lib/bcheck.c:
add __bound___aeabi_memcpy/__bound___aeabi_memmove
__bound___aeabi_memmove4/__bound___aeabi_memmove8
__bound___aeabi_memset for arm
call fetch_and_add_arm/fetch_and_add_arm64/fetch_and_add_riscv64
__bound_init: Fix type for start/end/ad
__bound_malloc/__bound_memalign/__bound_realloc/__bound_calloc: Use size + 1
arm-gen.c:
add bound checking code like i386/x86_64
assign_regs: only malloc if nb_args != 0
gen_opi/gen_opf: Fix reload problems
arm-link.c:
relocate_plt: Fix address calculating
arm64-gen.c:
add bound checking code like i386/x86_64
load/store: remove VT_BOUNDED from sv->r
arm64_hfa_aux/arm64_hfa_aux: Fix array code
gfunc_prolog: only malloc if n != 0
arm64-link.c:
code_reloc/gotplt_entry_type/relocate: add R_AARCH64_LDST64_ABS_LO12_NC
relocate: Use addXXle instead of writeXXle
riscv64-gen.c:
add bound checking code like i386/x86_64
add NB_ASM_REGS/CONFIG_TCC_ASM
riscv64-link.c:
relocate: Use addXXle instead of writeXXle
i386-gen.c/x86_64-gen.c
gen_bounds_epilog: Fix code (unrelated)
tests/Makefile:
add $(BTESTS) for arm/arm64/riscv64
tests/tests2/Makefile:
Use 85 only on i386/x86_64 because of asm code
Use 113 only on i386/x86_64 because of DLL code
Add 112/114/115/116 for arm/arm64/riscv64
Fix FILTER (failed on riscv64)
tests/boundtest.c:
Only use alloca for i386/x86_64
This allows creation of TCCStates and operation with API
calls independently from each other, even from threads.
Frontend (option parsing/libtcc.c) and backend (linker/tccelf.c)
now depend only on the TCCState (s1) argument.
Compilation per se (tccpp.c, tccgen.c) is still using
globals for convenience. There is only one entry point
to this section which is tcc_compile() which is protected
by a semaphore.
There are some hacks involved to avoid too many changes,
as well as some changes in order to avoid too many hacks ;)
The test libtcc_test_mt.c shows the feature. Except this
new file the patch adds 87 lines overall.
Fedora, RHEL and Centos have a default page size of 64K for arm64, so
bump up the page size so that ELF sections of the generated inary are
correctly aligned for 64K pages too.
this is enough to let me link a tcctest.c compiled by GCC
using some current debian sid riscv64 system. It needs
linking against libgcc.a for various floating point TFmode
routines. The result runs.
tccgen.c:
- fix ldouble asm hack
- fix a VLA problem on Win64 (also x86_64-gen.c)
- patch_type(): make sure that no symbol ever changes
from global to static
tcc.c:
- tcc -vv: print libtcc1.a path also on win32
tccpe.c, tcctools.c:
- use unix LF mode to for .def output files (that is for
creating reproducible output trees)
Makefile:
- suppress some warnings when makeinfo is missing
- call 'which install' only on win32
tests/Makefile:
- change PATH only on WINNT systems (i.e. not if cross-compiling
on linux for win32)
- asm-c-connect.test: slim output and do diff
tccrun.c tccpe.c *-link.c:
- integrate former 'pe_relocate_rva()' into normal relocation
This also fixes linkage of the unwind data on WIN64 for -run
(reported by Janus Lynggaard Thorborg)
tccasm.c, tests/tcctest.c:
- fix dot (sym_index of -1 crashed in put_elf_reloc)
- massage .set a bit (see test)
other:
- #define SECTION_ABS removed
- ST_DATA Section *strtab_section: removed
- put_extern_sym2(): take int section number
Conflicts:
tccelf.c
tccpe.c
Conflicts:
tccelf.c
local symbols can be resolved statically, they don't have to be
done dynamically, so this is a slight speedup at load time for
produced executables and shared libs. The musl libc also rejects
any STB_LOCAL symbols for dynamic symbol resolution, so there it
also fixes use of shared libs created by tcc.
The O(xxx) stuff in i386-asm.c had me scratching my head. Extracting
the macro and trying it out in a separate program doesn't give
me any warnings, so I'm confused about what could be going on there.
Any cast will make things happy. I used a uint64_t to catch actual
cases of overflow, which will still cause a -Wconstant-conversion
warning.
Signed-off-by: Andrei Warkentin <andrey.warkentin@gmail.com>
- generate and use SYM@PLT for plt addresses
- get rid of patch_dynsym_undef hack (no idea what it did on FreeBSD)
- use sym_attrs instead of symtab_to_dynsym
- special case for function pointers into .so on i386
- libtcc_test: test tcc_add_symbol with data object
- move target specicic code to *-link.c files
- add R_XXX_RELATIVE (needed for PE)
MSVC does not support array designator so cannot compile source using
relocs_info. This commit replace the relocs_info array into a set of
functions, each returning the value given by a given field of the struct
reloc_info.
Last use for pltoff_addend field of relocs_info array was removed in
commit 25927df3b7. It is now useless so
this commit removes it and all initialization related to it.
i386 target does not have PC relative loads. Its ABI therefore require
ebx register to points to the GOT when executing a PLT entry. This means
that PLT entry cannot be used transparently, the compiler needs to
expect execution of a PLT entry to be able to use one, that is a PLT
entry should only be created if the relocation explicitely asks for it
(eg. R_386_PLT32).
This patch creates a new target macro PCRELATIVE_DLLPLT to indicate
whether a target can do a PC relative load in PLT entry when building a
dynamic library. Executable do not normally pose a problem because they
are loaded at a fixed address and thus the absolute address of GOT can
be used.
Note that in such a case, if the compiler does not use a PLT aware
relocation for external access then the code relocation will fall on the
dynamic loader since there is no PLT entry to relocate too.
C standard specifies that array should be declared with a non null size
or with * for standard array. Declaration of relocs_info in tcc.h was
not respecting this rule. This commit add a R_NUM macro that maps to the
R_<ARCH>_NUM macros and declare relocs_info using it. This commit also
moves all linker-related macros from <arch>-gen.c files to <arch>-link.c
ones.
Static relocation of functions in dynamic libraries must use the PLT
entry as the target. Before this commit, it used to be done in 2 parts
for ARM, with the offset of the PLT entry from the beginning of the PLT
being put in the relocated place in build_got_entries () and then the
address of the PLT being added in relocate_section.
This led to code dealing with reading the offset of a bl instruction in
build_got_entries. Furthermore, the addition of the address of the start
of the PLT was done based on the relocation type which does not convey
whether a PLT entry should be used to reach the symbol.
This commit moves the decision to use the PLT as the target in
relocate_section, therefore having the instruction aware code contained
to the target-specific bit of that function (in <target>-link.c).
Note that relocate_syms is *not* the right place to do this because two
different relocations for the same symbol can make different decision.
This is the case in tcc -run mode where the static and dynamic
relocation are done by tcc.
Storing the PLT entry address in the symbol's st_value field and relying
on the specific relocation type being used for dynamic relocation would
work but the PLT entry address would then appear in the static symbol
table (symtab). This would also make the static symbol table entry
differ from the dynamic symbol table entry.