Lets assume that in *.S files a preprocessor directive
follow '#' char w/o spaces between. Otherwise there is
too many problems with the content of the comments.
* tell a right line number in error message
if a #line directive is wrong
* don't print an error message if we preprocess a .S file
and #line directive is wrong. This is the case of
the
# 4026 bytes
comment in *.S file.
* preprocess_skip: skip a line with
if (parse_flags & PARSE_FLAG_ASM_COMMENTS)
p = parse_line_comment(p);
if line starts with # and a preprocessor command not found.
A test program:
#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
# This repeats until either a device doesn't exist, or until
#endif
* remove a second definition of the TOK_FLAG_* and PARSE_FLAG_*
from the tccpp.c
* define targetos=Windows when --enable-tcc32-mingw, --enable-cygwin, ...
* use TARGETOS insteed HOST_OS when selecting PROGS
* use "$(tccdir)" insteed $(tccdir) on install (spaces in path)
* install tcc.exe too
* produce bcheck.o when cross-compiling too (lib/Makefile)
* force bcheck.o linking by compiling inside tcc_set_output_type()
a dummy program with local array. Otherwise bcheck.o may be not linked.
* replace %xz format specifier with %p in bcheck (don't supported on
Windows)
* call a __bound_init when __bound_ptr_add, __bound_ptr_indir,
__bound_new_region, __bound_delete_region called.
This is because a __bound_init inside ".init" section is not called
on Windows for unknown reason.
* print on stderr a message when an illegal pointer is returned:
there is no segmentation violation on Windows for a program
compiled with "tcc -b"
* remove "C:" subdir on clean if $HOST_OS = "Linux"
* default CFLAGS="-Wall -g -O0" insteed CFLAGS="-Wall -g -O2"
to speed up compilation and more precise debugging.
tcc w/o -g option generate an executable file which format
is not recognized by binutils. It is like stripped one but
binutils don't think so. Solution: generate not stripped
file which can be correctly stripped by external utils.
may be there is a need to handle a -s option and call
a sstrip/strip program to do a job.
------------ libtest ------------
./libtcc_test lib_path=..
<string>:11: warning: implicit declaration of function 'printf'
<string>:13: warning: implicit declaration of function 'add'
------------ test3 ------------
tcctest.c:1982: warning: implicit declaration of function 'putchar'
tcctest.c:2133: warning: implicit declaration of function 'strlen'
- a warning: unnamed struct/union that defines no instances
- allow a nested named struct declaration w/o identifier
only when option -fms-extensions is used
- care about __attribute__ redefinition in the system headers
- an invalid pointer must be returned when (addr >= e->size),
and not (addr > e->size)
A test program:
#include <stdio.h>
#include <stdlib.h>
int main ()
{
int v[10];
fprintf(stderr, "&v[0] = %p\n", &v[0]);
fprintf(stderr, "&v[10] = %p\n", &v[10]);
exit(1);
return 0;
}
// tcc -b test.c
The output before a patch:
&v[0] = 0xbf929d8c
&v[10] = 0xbf929db4
The output after a patch:
&v[0] = 0xbff6e33c
&v[10] = 0xfffffffe
On Linux 32: sizeof(long)=32 == sizeof(void *)=32
on Linux 64: sizeof(long)=64 == sizeof(void *)=64
on Windows 64: sizeof(long)=32 != sizeof(void *)=64
The following program (errno.c) reports errno=2 when run
using "tcc -run errno.c"
#include <errno.h>
#include <stdio.h>
int main(void) { printf("errno=%d\n", errno); return 0; }
A test program (must be compiled by the above version of the tcc):
/* Tickle a bug in TinyC on 64-bit systems:
* the LSB of the top word or ARGP gets set
* for no obvious reason.
*
* Source: a legacy language interpreter which
* has a little stack / stack pointer for arguments.
*
* Output is: 0x8049620 0x10804961c
* Should be: 0x8049620 0x804961c
*/
#include <stdio.h>
#define NARGS 20000
int ARG[NARGS];
int *ARGSPACE = ARG;
int *ARGP = ARG - 1;
main() { printf("%p %p\n", ARGSPACE, ARGP); }
Force to use a NATIVE_DEFINES insteed of the DEFINES for the
native tcc. After this change we have on debian/ubuntu
# ./x86_64-tcc -vv
tcc version 0.9.26 (x86-64, Linux)
install: /usr/local/lib/tcc
crt:
/usr/lib/x86_64-linux-gnu
libraries:
/usr/lib/x86_64-linux-gnu
/usr/lib
/lib/x86_64-linux-gnu
/lib
/usr/local/lib/x86_64-linux-gnu
/usr/local/lib
include:
/usr/local/include/x86_64-linux-gnu
/usr/local/include
/usr/include/x86_64-linux-gnu
/usr/include
/usr/local/lib/tcc/include
elfinterp:
/lib64/ld-linux-x86-64.so.2
Before this change the output was
# ./x86_64-tcc -vv
tcc version 0.9.26 (x86-64, Linux)
install: /usr/local/lib/tcc
crt:
/usr/lib
libraries:
/usr/lib
/lib
/usr/local/lib
include:
/usr/local/include
/usr/include
/usr/local/lib/tcc/include
elfinterp:
/lib64/ld-linux-x86-64.so.2
This change don't fix a cross compilers
The following check in tccgen.c is removed
if (nocode_wanted)
tcc_error("statement expression in global scope");
This check is introduced in commit 5bcc3eed7b and breaks compilation
of the linux 2.4.26 kernel.
int i = i++ causes a segfault because of missing guard. Looking
recursively at all backend functions called from middle end several more
guard appeared to be missing.
i386-tcc.exe is a compiler for i386 Linux. A HOST_OS variable in Makefile is
introduced and used to select a native compiler (which one to name as tcc.exe)
Some structs are passed in registers. When they need more than
one the implementation of __va_arg on x86-64 didn't correctly account
for this. This fixes only the cases where the structs consist of
integer types, as there the register save area is consecutive.
Fixes some tests from 73_arm64.c, but still leaves those failing
that use floating point in the large-but-regpassed structs.