The no-operand vm* instructions can be interpreted as having a
funny modrm byte, but unlike no-operand OPC_MODRM it's also the
r/m field which selects the insn, not (only) the reg field (aka group),
so we need another insn type.
as this is the first opcode TCC supports that has a 0xf3 prefix
and uses integer registers (not SSE ones) this also needs some shuffling
of the prefix code to not generate invalid instructions (the REX prefix
_must_ come directly before the main opcode (including 0f prefix), and
hence needs to come after the 0xf3 prefix). Also disable some mnemonics
in asmtest.S that new GAS doesn't support anymore. The only difference
to GAS (in asmtest.S) is now the 'lock negl' instruction which TCC
emits as 'lock; negl'. That's fine.
the avoidance of mov im32->reg64 wasn't working when reg64 was rax.
While fixing this also fix instructions which had the REX prefix
hardcoded in opcode and so didn't support extended registers which
would have added another REX prefix.
lar can accept multiple sizes as well (wlx), like lsl. When using
autosize it's important to look at the destination operand first;
when it's a register that one determines the size, not the input
operand.
Now we can express prefixes with 0x0fxx opcodes we can correct the
movq mem64->xmm opcode, and restrict the movq xmm->mem64 movq to
not invalidly accept mmx.
Disjoint instruction types don't need to be a bit field, so
introduce an enumeration (3 bits). Also the 0x0f prefix can
be expressed by a bit, doesn't need a byte in the opcode field.
That enables to encode further prefixes still in 16 bit.
To not have to touch all insns do some macro fiddling filtering
out a 0x0f byte in the second position.
In particular those that are extensions of existing mmx (or sse1)
instructions by a simple 0x66 prefix. There's one caveat for
x86-64: as we don't yet correctly handle the 0xf3 prefix
the movq mem64->xmm is wrong (tested in asmtest.S). Needs
some refactoring of the instr_type member.
There were two errors in the arithmetic imm8 instruction. They accept
only REGW, and in case the user write a xxxb opcode that variant
needs to be rejected as well (it's not automatically rejected by REGW
in case the destination is memory).
Two things: negative constants were rejected (e.g. "add $-15,%eax").
Second the insn order was such that the arithmetic IM8S forms
weren't used (always the IM32 ones). Switching them prefers those
but requires a fix for size calculation in case the opcodes were
OPC_ARITH and OPC_WLX (whose size starts with 1, not zero).
Fix it to actually be able to parse 64bit immediates (enlarge
operand value type). Then, generally there's no need for accepting
IM64 anywhere, except in the 0xba+r mov opcodes, so OP_IM is
unnecessary, as is OPT_IMNO64. Improve the generated code a bit
by preferring the 0xc7 opcode for im32->reg64, instead of the
im64->reg64 form (which we therefore hardcode).
A bag of assembler fixes, to be either compatible with GAS
(e.g. order of 'test' operands), accept more instructions,
count correct foo{bwlq} variants on x86_64, fix modrm/sib bytes
on x86_64 to not use %rip relative addressing mode, to not use
invalid insns in tests/asmtest.S for x86_64.
Result is that now output of GAS and of tcc on tests/asmtest.S
is mostly the same.
Various x86 asm fixes: 64bit lcall/ljmp like 32bit a commit before,
xchgw accepted wrong operands on 32 and 64bit, and 64bit used
0x40/0x48+reg for incw/decw, but those are REX prefixes, not
instructions.
* Documentation is now in "docs".
* Source code is now in "src".
* Misc. fixes here and there so that everything still works.
I think I got everything in this commit, but I only tested this
on Linux (Make) and Windows (CMake), so I might've messed
something up on other platforms...