all C/C++/ObjC symbols in symbols tables have a leading underscore
in Mach-O. Within TCC there's some confusion with tcc_add_symbol
(not adding it) and tcc_get_elf_symbol (not expecting it), and
resolve_syms (using dlsym, which doesn't expect it) and -run support.
But this sort of works.
this does generate a working executable for a very simple
example input, e.g. this:
% cat simple.c
int main(void)
{
return 0;
}
% ./tcc -B. -c simple.c
% ./tcc -nostdlib -B. simple.o -lc
% ./a.out && echo okay
okay
(the -lc is actually not necessary right now, see below). This
has many limitations:
* no symbol table, hence no calls to external functions from
e.g. libc, aka libSystemB
* no proper entry point (should be main, but is hardcoded to first
real .text address)
* libSystemB is hardcoded, no other libs are supported (but again
no external calls anyway)
* generated Mach-O executable is in old format: neither LC_DYLD_INFO
no export tries for symbols are created (no symbol table at all!)
* the __LINKEDIT segment is faked and empty, as dyld doesn't like
it empty even if no symbols point into it
* same with __DATA, dyld wants a non-empty writable segment which
we enforce with useless data
* no relocations, hence no function call stubs (lazy or not) are
generated
* hardcodes some other constants as well
from e640ed1aeb
Also:
- cleanup -std, -O, -pthread
- tcc.h:win32: use win32-type include paths even for cross
compilers (needed for loading tcc_predefs.h in cases)
- Makefile: simplify OSX .dylib clause
Checked on:
- i386/x86_64 (linux/windows)
- arm/arm64 (rapberry pi)
- riscv64 (simulator)
Not tested for arm softfloat because raspberry pi does not support it.
Modifications:
Makefile:
add arm-asm.c to arm64_FILES
add riscv64-asm.c (new file) to riscv64_FILES
lib/Makefile:
add fetch_and_add_arm.o(new file) to ARM_O
add fetch_and_add_arm64.o(new file) to ARM64_O
add fetch_and_add_riscv64.o(new file) to RISCV64_O
add $(BCHECK_O) to OBJ-arm/OBJ-arm64/OBJ-riscv64
tcc.h:
Enable CONFIG_TCC_BCHECK for arm32/arm64/riscv64
Add arm-asm.c, riscv64-asm.c
tcctok.h:
for arm use memmove4 instead of memcpy4
for arm use memmove8 instead of memcpy8
tccgen.c:
put_extern_sym2: for arm check memcpy/memmove/memset/memmove4/memmove8
only use alloca for i386/x86_64
for arm use memmove4 instead of memcpy4
for arm use memmove8 instead of memcpy8
fix builtin_frame_address/builtin_return_address for arm/riscv64
tccrun.c:
Add riscv64 support
fix rt_getcontext/rt_get_caller_pc for arm
tccelf.c:
tcc_load_dll: Print filename for bad architecture
libtcc.c:
add arm-asm.c/riscv64-asm.c
tcc-doc.texi:
Add arm, arm64, riscv64 support for bound checking
lib/bcheck.c:
add __bound___aeabi_memcpy/__bound___aeabi_memmove
__bound___aeabi_memmove4/__bound___aeabi_memmove8
__bound___aeabi_memset for arm
call fetch_and_add_arm/fetch_and_add_arm64/fetch_and_add_riscv64
__bound_init: Fix type for start/end/ad
__bound_malloc/__bound_memalign/__bound_realloc/__bound_calloc: Use size + 1
arm-gen.c:
add bound checking code like i386/x86_64
assign_regs: only malloc if nb_args != 0
gen_opi/gen_opf: Fix reload problems
arm-link.c:
relocate_plt: Fix address calculating
arm64-gen.c:
add bound checking code like i386/x86_64
load/store: remove VT_BOUNDED from sv->r
arm64_hfa_aux/arm64_hfa_aux: Fix array code
gfunc_prolog: only malloc if n != 0
arm64-link.c:
code_reloc/gotplt_entry_type/relocate: add R_AARCH64_LDST64_ABS_LO12_NC
relocate: Use addXXle instead of writeXXle
riscv64-gen.c:
add bound checking code like i386/x86_64
add NB_ASM_REGS/CONFIG_TCC_ASM
riscv64-link.c:
relocate: Use addXXle instead of writeXXle
i386-gen.c/x86_64-gen.c
gen_bounds_epilog: Fix code (unrelated)
tests/Makefile:
add $(BTESTS) for arm/arm64/riscv64
tests/tests2/Makefile:
Use 85 only on i386/x86_64 because of asm code
Use 113 only on i386/x86_64 because of DLL code
Add 112/114/115/116 for arm/arm64/riscv64
Fix FILTER (failed on riscv64)
tests/boundtest.c:
Only use alloca for i386/x86_64
ELF files that refer to shared libs containing sym-versions, but
don't refer to any dynamic symbols with symbol versions (should happen
only with very simple shared libs) would generate an empty .gnu.version_r
section. Some dynamic linker contain bugs in that they don't check
the section size or DT_VERNEEDNUM (which are both zero for such files
we generate) before accessing the first entry, and then bail out with
a message like
./a.exe: error while loading shared libraries: ./a1.so: unsupported
version 25960 of Verneed record
(where the "version number" actually comes from neighboring bytes
from different sections).
So, there's not much choice, we simply must not generate such section.
- tests2/113_btdll.c: test handling multiple stabs infos
Also:
- libtcc.c: remove _ISOC99_SOURCE pre-defines. It is causing
strange warnings such as 'strdup not declared'
- i386/x86_64-gen.c cleanup bounds_pro/epilog. This discards
the extra code for main's argv. If needed, __argv might be
processed instead.
- tccgen.c:block(): reduce stackspace usage. For example with
code like "if (..) ... else if (..) ... else if (..)... "
considerable numbers of nested block() calls may occur.
Before that most stack space used when compiling itself was
for libtcc.c:tcc_set_linker().
Now it's rather this construct at tccpp.c:2765: in next_nomacro1():
if (!((isidnum_table[c - CH_EOF] & (IS_ID|IS_NUM))
|| c == '.'
|| ((c == '+' || c == '-')
...
This makes it possible to get backtraces with executables
(including DLLs/SOs) like we had it already with -g -run.
Option -b includes -bt, and -bt includes -g.
- new file lib/bt-exe.c: used to link rt_printline and the
exception handler from tccrun.c into executables/DLLs.
- new file lib/bt-log.c: provides a function that may be
called from user code to print out a backtrace with a
message (currently for i386/x86_64 only):
int (*tcc_backtrace)(const char *fmt, ...);
As an extra hack, if 'fmt' is prefixed like "^file.c^..."
then the backtrace will skip calls from within 'file.c'.
- new file lib/bt-dll.c: used on win32 to link the backtrace
and bcheck functions with the main module at runtime
- bcheck.c: now uses the tcc_backtrace function from above
- tccgen.c: minor cleanups
- tccelf.c: stab sections get SHF_ALLOC for easy access.
Also in relocate_section(): 64bit relocations for stabs
in DLLs cannot work. To find DLL addresses, the DLL base
is added manually in tccrun.c via rc.prog_base instead.
- tccpe.c: there are some changes to allow merging sections,
used to merge .finit_array into .data in the first place.
- tccpp.c: tcc -run now #defines __TCC_RUN__
also: refactor a line in tal_realloc that was incompatible
with bcheck
- tcctest.c: fixed a problem with r12 which tcc cannot preserve
as well as gcc does.
- tests2/112_backtrace.c: test the feature and the bcheck test18
that previously was in boundtest.c
Add __attribute__((constructor)) to __bounds_init.
- remove tcc_add_bcheck from i386-link.c and x86_64-link.c
- add simplified tcc_add_bcheck to tccelf.c
- Update tccrun.c to call constructor/destructor.
Set dynsym sh_info to number of local symbols in tccelf.c
Reduce stack size when bounds checking is enabled.
Added variable TCC_LIBBCHECK for windows support.
Add signal stack to detect stack overflow.
Add all & parameters in lbound_section and remove them if not used.
Close fd in tcc_relocate in tccrun.c
Fix section type constructor/destructor in tccelf.c
Add check code in tests/boundtest.c for mem/str functions.
Remove -ba from documentation.
Add bounds check signal info in documentation.
bcheck.c:
- Fix initial_pool alignment.
. Fix printf statements.
. Add prototypes for all external interface functions.
- Add TCC_BOUNDS_WARN_POINTER_ADD environment variable.
. Add ctype and errno data.
- Fix alloca when multithreading is used.
- Add lock for __bound_checking and __bound_never_fatal.
- Catch pthread_create and use locks when called.
- Detect in loaded in shared lib and use locks when found
- Use spin locks instead of semaphore locks.
- Make spin locked code as small as possible.
- Fix mem/str functions checking.
- Fix overlap checking mem/str functions.
Put total_lines etc. into TCCState. Also, initialize
the predefined compiler types for the preprocessor too.
tccpe.c: fix BaseOfCode if .init section present (with tcc -b)
* a major revision of the rt_printline() feature in
tccrun.c to report file:linenumber more correctly.
* minor changes to the stab info produced by the
compiler in tccgen.c
However stab addresses are limited to 32 bits. I added
a work around:
if (sizeof pc == 8)
pc |= wanted_pc & 0xffffffff00000000ULL;
However GDB has problems with that too.
- revert Makefiles to state before last bcheck additions
Instead, just load bcheck.o explicitly if that is
what is wanted.
- move tcc_add_bcheck() to the <target>-link.c files and
remove revently added arguments. This function is to
support tccelf.c with linking, not for tccgen.c to
support compilation.
- remove -ba option: It said:
"-ba Enable better address checking with bounds checker"
Okay, if it is better then to have it is not an option.
- remove va_copy. It is C99 and we try to stay C89 in tinycc
when possible. For example, MS compilers do not have va_copy.
- win64: revert any 'fixes' to alloca
It was correct as it was before, except for bound_checking
where it was not implemented. This should now work too.
- remove parasitic filename:linenum features
Such feature is already present with rt_printline in
tccrun.c. If it doesn't work it can be fixed.
- revert changes to gen_bounded_ptr_add()
gen_bounded_ptr_add() was working as it should before
(mostly). For the sake of simplicity I switched it to
CDECL. Anyway, FASTCALL means SLOWCALL with tinycc.
In exchange you get one addition which is required for
bounds_cnecking function arguments. The important thing
is to check them *BEFORE* they are loaded into registers.
New function gbound_args() does that.
In any case, code instrumentation with the bounds-check
functions as such now seems to work flawlessly again,
which means when they are inserted as NOPs, any code that
tcc can compile, seems to behave just the same as without
them.
What these functions then do when fully enabled, is a
differnt story. I did not touch this.
The bounds checking code has now enabled gen_bounded_ptr_add tests.
This makes the code slower but finds more errors.
I had to correct some things in tcc to make it work.
- Fixed off by one in lib/bcheck.c
- Corrected tccelf.c sym_versions.
- Disabled USE_TAL when using bounds checking.
- Fixed cstr_printf va_start.
- Fixed tests/tests2/46_grep.c off by one error.
- Updated gen_bounded_ptr_add in x86_64-gen.c
- Fixed x86_64-link.c pointer diff.
For gen_vla_alloc now always use alloca call when bounds checking.
Added line/filename in %rax before bound calls to find location of error.
This allows creation of TCCStates and operation with API
calls independently from each other, even from threads.
Frontend (option parsing/libtcc.c) and backend (linker/tccelf.c)
now depend only on the TCCState (s1) argument.
Compilation per se (tccpp.c, tccgen.c) is still using
globals for convenience. There is only one entry point
to this section which is tcc_compile() which is protected
by a semaphore.
There are some hacks involved to avoid too many changes,
as well as some changes in order to avoid too many hacks ;)
The test libtcc_test_mt.c shows the feature. Except this
new file the patch adds 87 lines overall.
so it isn't quadratic in number of symbols. It's still quadratic
in number of lib/version combinations (at library load time the
sym versions are internalized), but that's much less a problem as
in practice only glibc uses sym versioning.
* support loading sym addresses from GOT: important for weak syms,
fixes 104_inline. This is still incomplete, it only works
for taking the sym address, not for directly loading/storing into
such symbols (i.e. not for VT_LVAL)
* another op: '%'
* ELF flags: add EF_RISCV_FLOAT_ABI_DOUBLE, which is our ABI.
this is enough to let me link a tcctest.c compiled by GCC
using some current debian sid riscv64 system. It needs
linking against libgcc.a for various floating point TFmode
routines. The result runs.
- libtcc.c/tccpp.c: fix -U option for multiple input files
- libtcc: remove decl of tcc_add_crt() for PE
- tcc.h: define __i386__ and __x86_64__ for msvc
- tcc.h: undef __attribute__ for __TINYC__ on gnu/linux platforms
- tccelf.c: disable prepare_dynamic_rel unless x86/x64
- tccpe.c: construct rather than predefine PE section flags
- tccpp.c: (alt.) fix access of dead stack variable after error/longjmp
- x86_64-gen.c: fix func_alloca chain for nocode_wanted
- tccpp.c/tccgen.c: improve file:line info for inline functions
- winapi/winnt.h: correct position for DECLSPEC_ALIGN attribute
- win32/lib/crt: simplify top exception handler (needed for signal)
- arm64-gen.c: remove dprintf left from VT_CMP commit
- tccgen.c: limit binary scan with gcase to > 8 (= smaller code)
- tccgen.c: call save_regs(4) in gen_opl for cmp-ops (see test in tcctest.c)
build_got might realloc the symbol table (for the _GLOBAL_OFFSET_TABLE_
symbol), so we can't reuse sym (a pointer into it) after build_got.
Using it isn't necessary, as we pass the sym_index to put_got_entry,
and that recomputes sym.
read() is allowed to short-read, and return less bytes then requested.
The caller must restart read() when this happens (and they want more
bytes).
This patch is still buggy, because errors are not always checked.
Still, less buggy than before.
symbols are local when defined and referred to from the executable.
Also, we need to relocate the .got section when this is a static link
(our static linking effectively generates code as if this were a dynamic
link with PLT and GOT, and then emulates the runtime loader).
misc fixes including:
- tcc.c: fix "tcc -vv" for libtcc1.a on win32/PE
- tccelf.c: fix a crash when GOT has no relocs (witn -nostdlib)
- tccelf.c: fix stab linkage for zero n_strx
- tccgen.c: fix stdcall decoration for array parameters
int __stdcall func(char buf[10]) is _func@4 (was _func@12)
- tccgen.c: fix static variables with nocode/nodata_wanted
see tests2/96_nodata_wanted.c
- tccrun.c: align sections using sh_addralign (for reliable function_alignment)
- tests2/Makefile sort 100 after 99
- win32/include/sys/stat.h fix _stat and _wstat
- x86_64-gen.c: win64/gfunc_call: fix a bug with xmmN register args
previously overwrote valid other xmmN registers eventually
This is supposed to fix a bug where libtcc eventually was trying to
compile libtcc1.a as C source code.
Anyway, there is now only two functions that refer to s->filetype,
tcc_add_file() and tcc_add_library().
In prepare_dynamic_rel() on non x86 targets the count++ statements
appear before any case label and are therefore dead code. This triggers
build failure when building with -Werror. This patch adds an extra guard
around all the x86 case labels and their associated action, leaving just
the default case label for non x86 targets which builds fine.
Origin: vendor
Forwarded: no
Last-Updated: 2018-02-24
for a final link we shouldn't emit relocation sections that are applied
already. For now we need to emit ALLOCed .rel sections as they contain
dynamic relocs, they should be put into their own (new) section instead.
tccgen.c:
- fix ldouble asm hack
- fix a VLA problem on Win64 (also x86_64-gen.c)
- patch_type(): make sure that no symbol ever changes
from global to static
tcc.c:
- tcc -vv: print libtcc1.a path also on win32
tccpe.c, tcctools.c:
- use unix LF mode to for .def output files (that is for
creating reproducible output trees)
Makefile:
- suppress some warnings when makeinfo is missing
- call 'which install' only on win32
tests/Makefile:
- change PATH only on WINNT systems (i.e. not if cross-compiling
on linux for win32)
- asm-c-connect.test: slim output and do diff
tccrun.c tccpe.c *-link.c:
- integrate former 'pe_relocate_rva()' into normal relocation
This also fixes linkage of the unwind data on WIN64 for -run
(reported by Janus Lynggaard Thorborg)
tccasm.c, tests/tcctest.c:
- fix dot (sym_index of -1 crashed in put_elf_reloc)
- massage .set a bit (see test)
other:
- #define SECTION_ABS removed
- ST_DATA Section *strtab_section: removed
- put_extern_sym2(): take int section number
Conflicts:
tccelf.c
tccpe.c
Conflicts:
tccelf.c
This is supposed to make compilation and linking with
multiple source files (tcc f1.c f2.S ...) behave just
the same as linking object files.
tccgen.c:put_extern_sym2():
- use put_elf_sym to enter new symbols unconditionally
tccelf.c:
- save section state before compilation
- disable symbol hashing during compilation
- merge symbols and update relocations after compilation
tccpe.c:
- re-create s1->uw_sym for each compilation (because it
may change)
for this we have to create also asm symbols as VT_STATIC initially
except if there's an indication that it should be global (.globl
or undefined at end of unit). For this to work we need to
be able to globalize symbols after they were local and enter them
into the ELF hash tables, and also adjust the symbols that were
potentially already used in relocs when they were still local.
The easiest is to do a proper symbol resolution step also in multi-file
mode, for regular symbols (the non-dynamic ones, i.e. not from shared
libs).
* removed asm_label stack
* removed asm_free_labels() post-processing
* using "impossible C type" for asm labels (VT_ASM)
* tccgen.c:update_storage(): use it to refresh symbol attributes
* tccelf.c:find_elf_sym(): ignore STB_LOCAL symbols
* tccgen.c:unary(): asm symbols are supposed to be undeclared in C
This makes the asm symbols use the same members as the C symbols
for global decls, e.g. using the ELF symbol to hold offset and
section. That allows us to use only one symbol table for C and
asm symbols and to get rid of hacks to synch between them.
We still need some special handling for symbols that come purely
from asm sources.