tccgen.c:
doubles need to be aligned, on ARM. The section_reserve()
in init_putv does not do that.
-D ONE_SOURCE: is now the default and not longer needed. Also,
tcc.h now sets the default native target. These both make
compiling tcc simple as "gcc tcc.c -o tcc -ldl" again.
arm-asm.c:
enable pseudo asm also for inline asm
tests/tests2/Makefile:
disable bitfield tests except on windows and x86_64
and don't generate-always
tcc.c:
fix a loop with -dt on errors
configure:
print compiler version (as recognized)
tccpp.c:
actually define symbols for tcc -dt
clear static variables (needed for -dt or libtcc usage)
96_nodata_wanted.c:
use __label__ instead of asm
lib/files:
use native symbols (__i386__ etc.) instead of TCC_TARGET_...
* check that _Generic don't match unsigned char * with char *
this case is usefull as with -funsigned-char, 'char *' are unsigned
* change VT_LONG so it's now a qualifier
VT_LONG are never use for code generation, but only durring parsing state,
in _Generic we need to be able to make diference between
'long' and 'long long'
So VT_LONG is now use as a type qualifier, it's old behaviour is still
here, but we can keep trace of what was a long and what wasn't
* add TOK_CLONG and TOK_CULONG
tcc was directly converting value like '7171L' into TOK_CLLONG or
TOK_CINT depending of the machine architecture.
because of that, we was unable to make diference between a long and a
long long, which doesn't work with _Generic.
So now 7171L is a TOK_CLONG, and we can handle _Generic properly
* check that _Generic can make diference between long and long long
* uncomment "type match twice" as it should now pass tests on any platforms
* add inside_generic global
the point of this variable is to use VT_LONG in comparaison only
when we are evaluating a _Generic.
problem is with my lastest patchs tcc can now make the diference between
a 'long long' and a 'long', but in 64 bit stddef.h typedef uint64_t as
typedef signed long long int int64_t and stdint.h as unsigned long int, so tcc
break when stdint.h and stddef.h are include together.
Another solution woud be to modifie include/stddef.h so it define uint64_t as
unsigned long int when processor is 64 bit, but this could break some
legacy code, so for now, VT_LONG are use only inside generc.
* check that _Generic parse first argument correctly
* check that _Generic evaluate correctly exresion like "f() / 2"
* -dt now with lowercase t
* test snippets now separated by real preprocessor statements
which is valid C also for other compilers
#if defined test_xxx
< test snippet x >
#elif defined test_yyy
< test snippet y >
#elif ...
#endif
* simpler implementation, behaves like -run if no 'test_...' macros
are seen, works with -E too
* for demonstration I combined some of the small tests for errors
and warnings (56..63,74) in "60_errors_and_warnings.c"
Also:
* libtcc.c:
put tcc_preprocess() and tcc_assemble() under the setjmp clause
to let them return to caller after errors. This is for -dt -E.
* tccgen.c:
- get rid of save/restore_parse_state(), macro_ptr is saved
by begin_macro anyway, now line_num too.
- use expr_eq for parsing _Generic's controlling_type
- set nocode_wanted with const_wanted. too, This is to keep
VT_JMP on vtop when parsing preprocessor expressions.
* tccpp.c: tcc -E: suppress trailing whitespace from lines with
comments (that -E removes) such as
NO_GOTPLT_ENTRY,\t /* never generate ... */
The existing variable 'nocode_wanted' is now used to control
output of static data too. So...
(nocode_wanted == 0)
code and data (normal within functions)
(nocode_wanted < 0)
means: no code, but data (global or static data)
(nocode_wanted > 0)
means: no code and no data (code and data suppressed)
(nocode_wanted & 0xC0000000)
means: we're in declaration of static data
Also: new option '-dT' to be used with -run
tcc -dT -run file.c
This will look in file.c for certain comment-boundaries:
/*-* test-xxx: ...some description */
and then for each test below run it from memory. This way
various features and error messages can be tested with one
single file. See 96_nodata_wanted.c for an example.
Also: tccgen.c: one more bitfield fix
tccpp.c:
* #pragma comment(option,"-some-option")
to set commandline option from C code. May work only
for some options.
libtcc.c:
* option "-d1..9": sets a 'g_debug' global variable.
(for development)
tests2/Makefile:
* new make targets: tests2.37 / tests2.37+
run single test from tests2, optionally update .expect
* new variable GEN-ALWAYS to always generate certain .expects
* bitfields test
tccgen.c:
* bitfields: fix a bug and improve slightly more
* _Generic: ignore "type match twice"
The assembler uses the ->sym_scope member to walk up the symbols
until finding a non-automatic symbol. Since reordering the
members of Sym the sym_scope member contains a scope even for local
statics. Formerly the use of asm_label for statics was implicitely
clearing sym_scope, now we have to do that explicitely.
Add a testcase for that, and one I encountered when moving the
clearing of sym_scope too deep into the call chain (into put_extern_sym).
Like returned local variables also labels local to a statement expression
can be returned, and so their symbols must not be immediately freed
(though they need to be removed from the symbol table).
Use 2 level strategy to access packed bitfields cleanly:
1) Allow to override the original declaration type with
an auxilary "access type". This solves cases such as
struct {
...
unsigned f1:1;
};
by using VT_BYTE to access f1.
2) Allow byte-wise split accesses using two new functions
load/store_packed_bf. This solves any cases, also ones
such as
struct __attribute((packed)) _s {
unsigned x : 12;
unsigned char y : 7;
unsigned z : 28;
unsigned a: 3;
unsigned b: 3;
unsigned c: 3;
};
where for field 'z':
- VT_INT access from offset 2 would be unaligned
- VT_LLONG from offset 0 would go past the total
struct size (7)
and for field 'a' because it is in two bytes and
aligned access with VT_SHORT/INT is not possible.
Also, static bitfield initializers are stored byte-wise always.
Also, cleanup the struct_layout function a bit.
That means: we do not macro-expand the argument of 'defined'
Also: store the last token position into the TokenString
structure in order to get rid of the tok_last function.
This requires one more change in how macro arguments are expanded:
the standard requires that macro args are expanded before substituting
into the replacement list. This implies expanding them only once
even when they occur multiple times in the list. TCC expanded
them repeatedly in that case. Without __COUNTER__ that's harmless.
So, simply always expand arguments (when used without # and ##) once
and store the resulting tokens.
See added testcase 19.c from a bug report. The problem is reading outside
the arguments buffers, even though we aren't allowed to. The single
can_read_stream variable is not enough, sometimes we need to be able
to pop into outer contexts but not into arbitrarily outside contexts.
The trick is to terminate argument tokens with a EOF (and not just with
0 that makes us pop contexts), and deal with that in the few places
we have to,
This enables some cleanups of the can_read_stream variable use.
If there were more than 6 integer arguments before the ellipsis, or
there were used more than 8 slots used until the ellipsis (e.g. by
a large intermediate struct) we generated wrong code. See testcase.
- configure:
- add --config-uClibc,-musl switch and suggest to use
it if uClibc/musl is detected
- make warning options magic clang compatible
- simplify (use $confvars instead of individual options)
- Revert "Remove some unused-parameter lint"
7443db0d5f
rather use -Wno-unused-parameter (or just not -Wextra)
- #ifdef functions that are unused on some targets
- tccgen.c: use PTR_SIZE==8 instead of (X86_64 || ARM64)
- tccpe.c: fix some warnings
- integrate dummy arm-asm better
For integer promotion with for example arithmetics or
expr_cond (x ? y : z), integral types need to be promoted
to signed if they fit.
According to latest standards, this also applies to bit-field
types taking into account their specific width.
In tcc, VT_BITFIELD set means width < original type width
Field-widths between 33 and 63 are promoted to signed long long
accordingly.
struct { unsigned long long ullb:35; } s = { 1 };
#define X (s.ullb - 2)
int main (void)
{
long long Y = X;
printf("%d %016llx %016llx\n", X < 0, -X, -Y);
return 0;
}
Results:
GCC 4.7 : 0 0000000000000001 FFFFFFF800000001
MSVC : 1 0000000000000001 0000000000000001
TCC : 1 0000000000000001 0000000000000001
Also, gcc would promote long long bitfields of size < 32
to int as well. Example:
struct { unsigned long long x:20; } t = { 123 };
/* with gcc: */ printf("%d %d\n", t.x, 456);
/* with tcc: */ printf("%lld %d\n", t.x, 456);
* tccgen: re-allow long double constants for x87 cross
sizeof (long double) may be 12 or 16 depending on host platform
(i386/x86_64 on unix/windows).
Except that it's 8 if the host is on windows and not gcc
was used to compile tcc.
* win64: fix builtin_va_start after VT_REF removal
See also a8b83ce43a
* tcctest.c: remove outdated limitation for ll-bitfield test
It always worked, there is no reason why it should not work
in future.
* libtcc1.c: exclude long double conversion on ARM
* Makefile: remove CFLAGS from link recipes
* lib/Makefile: use target DEFINES as passed from main Makefile
* lib/armflush.c lib/va_list.c: factor out from libtcc1.c
* arm-gen.c: disable "depreciated" warnings for now
'extern int i = 42;' at file scope (but not in function scope!) is
allowed and is a proper definition, even though questionable style;
some compilers warn about this.
See the added testcase. When one used designators like .a.x to initialize
sub-members of members, and didn't then initialize all of them the
required zero-initialization of the other sub-members wasn't done.
The fix also enables tiny code cleanups.
See testcase. If an enum has only positive values, fits N bits,
and is placed in a N-bit bit-field that bit-fields must be treated
as unsigned, not signed.
This invalid function definition:
int f()[] {}
was tried to be handled but there was no testcase if it actually worked.
This fixes it and adds a TCC only testcase.
factor code a bit for transforming tokens into SValues. This revealed
a bug in TOK_GET (see testcase), which happened to be harmless before.
So fix that as well.
Our code generation assumes that it can load/store with the
bit-fields base type, so bit_pos/bit_size must be in range for this.
We could change the fields type or adjust offset/bit_pos; we do the
latter.
Checked the lcc testsuite for bitfield stuff (in cq.c and fields.c),
fixed one more error in initializing unnamed members (which have
to be skipped), removed the TODO.
- configure/Makefiles: minor adjustments
- build-tcc.bat: add -static to gcc options
(avoids libgcc_s*.dll dependency with some mingw versions)
- tccpe.c/tcctools.c: eliminate MAX_PATH
(not available for cross compilers)
- tccasm.c: use uint64_t/strtoull in unary()
(unsigned long sometimes is only uint32_t, as always on windows)
- tccgen.c: Revert (f077d16c) "tccgen: gen_cast: cast FLOAT to DOUBLE"
Was a rather experimental, tentative commit, not really necessary
and somewhat ugly too.
- cleanup recent osx support:
- Makefile/libtcc.c: cleanup copy&paste code
- tccpp.c: restore deleted function
Arg substitution leaves placeholder marker in the stream for
empty arguments. Those need to be skipped when searching for
a fnlike macro invocation in the replacement list itself. See
testcase.
Commit bb93064 changed the path seperator from ':' to ';', which was
likely accidental. While path seperator on Windows is generally ';', the
Makefile clearly expects a posix-y shell, and in such environments the
separator is ':'.
This fixes the test run in MSYS2 and MSYS(1) environments, which got
broken on bb93064 .
supports building cross compilers on the fly without need
for configure --enable-cross
$ make cross # all compilers
$ make cross-TARGET # only TARGET-compiler & its libtcc1.a
with TARGET one from
i386 x86_64 i386-win32 x86_64-win32 arm arm64 arm-wince c67
Type 'make help' for more information
the avoidance of mov im32->reg64 wasn't working when reg64 was rax.
While fixing this also fix instructions which had the REX prefix
hardcoded in opcode and so didn't support extended registers which
would have added another REX prefix.
Forgot about it. It allows to compile several
sources (and other .o's) to one single .o file;
tcc -r -o all.o f1.c f2.c f3.S o4.o ...
Also:
- option -fold-struct-init-code removed, no effect anymore
- (tcc_)set_environment() moved to tcc.c
- win32/lib/(win)crt1 minor fix & add dependency
- debug line output for asm (tcc -c -g xxx.S) enabled
- configure/Makefiles: x86-64 -> x86_64 changes
- README: cleanup
usage:
tcc -ar [rcsv] lib files...
tcc -impdef lib.dll [-v] [-o lib.def]
also:
- support more files with -c: tcc -c f1.c f2.c ...
- fix a bug which caused tcc f1.c f2.S to produce no asm
- allow tcc -ar @listfile too
- change prototype: _void_ tcc_set_options(...)
- apply -Wl,-whole-archive when a librariy is given
as libxxx.a also (not just for -lxxx)
- lib/Makefile: add (win)crt1_w.o
- crt1.c/_runtmain: return to tcc & only use for UNICODE
(because it might be not 100% reliable with for example
wildcards (tcc *.c -run ...)
- tccrun.c/tccpe.c: load -run startup_code only if called
from tcc_run(). Otherwise main may not be defined. See
libtcc_test.c
- tests2/Makefile: pass extra options in FLAGS to allow
overriding TCC
Also:
- tccpe.c: support weak attribute. (I first tried to solve
the problem above by using it but then didn't)
Also:
- in tests: generate .expect files only if not yet present,
because
1) some files were adjusted manually
2) switching git branche might change timestamps and
cause unwanted update
tests/Makefile: fix out-of-tree build issues
Also:
- win64: align(16) MEM_DEBUG user memory
on win64 the struct jmp_buf in the TCCState structure which we
allocate by tcc_malloc needs alignment 16 because the msvcrt
setjmp uses MMX instructions.
- libtcc_test.c: win32/64 need __attribute__((dllimport)) for
extern data objects
- tcctest.c: exclude stuff that gcc does not compile
except for relocation_test() the other issues are mostly ASM
related. We should probably check GCC versions but I have
no idea which mingw/gcc versions support what and which don't.
- lib/Makefile: use tcc to compile libtcc1.a (except on arm
which needs arm-asm
Some more subtle issues with code suppression:
- outputting asms but not their operand setup is broken
- but global asms must always be output
- statement expressions are transparent to code suppression
- vtop can't be transformed from VT_CMP/VT_JMP when nocode_wanted
Also remove .exe files from tests2 if they don't fail.
Also ...
tcctest.c:
- exclude stuff that gcc doesn't compile on windows.
libtcc.c/tccpp.c:
- use unsigned for memory sizes to avoid printf format warnings
- use "file:line: message" to make IDE error parsers happy.
tccgen.c: fix typo
on 32bit long long support was sometimes broken. This fixes
code-gen for long long values in switches, disables a x86-64 specific
testcase and avoid an undefined shift amount. It comments out
a bitfield test involving long long bitfields > 32 bit; with GCC layout
they can straddle multiple words and code generation isn't prepared
for this.
when an alignment is explicitely given on the member itself,
or on its types attributes then respect it always. Was only
allowed to increase before, but GCC is allowing it.
The linux kernel has some structures that are page aligned,
i.e. 4096. Instead of enlarging the bit fields to specify this,
use the fact that alignment is always power of two, and store only
the log2 minus 1 of it. The 5 bits are enough to specify an alignment
of 1 << 30.
Such struct decl:
struct S { char a; int i;} __attribute__((packed));
should be accepted and cause S to be five bytes long (i.e.
the packed attribute should matter). So we can't layout
the members during parsing already. Split off the offset
and alignment calculation for this.
See testcases. We now support 64bit case constants. At the same time
also 64bit enum constants on L64 platforms (otherwise the Sym struct
isn't large enough for now). The testcase also checks for various
cases where sign/zero extension was confused.
See testcase. We must always paste tokens (at least if not
currently substing a normal argument, which is a speed optimization
only now) but at the same time must not regard a ## token
coming from argument expansion as the token-paste operator, nor
if we constructed a ## token due to pasting itself (that was already
checked by pp/01.c).
In certain very specific situations (involving switches
with asms inside dead statement expressions) we could generate
invalid code (clobbering the buffer so much that we generated
invalid instructions). Don't emit the decision table if the
switch itself is dead.
The callee saved registers (among them r12-r15) really need
saving/restoring if mentioned in asm clobbers, even if TCC
itself doesn't use them. E.g. the linux kernel relies on that
in its switch_to() implementation.
When intializing members where the initializer needs relocations
and the member is initialized multiple times we can't allow
that to lead to multiple relocations to the same place. The last
one must win.
Similar to GCC a local asm register variable enforces the use of a
specified register in asm operands (and doesn't otherwise
matter). Works only if the variable is directly mentioned as
operand. For that we now generally store a backpointer from
an SValue to a Sym when the SValue was the result of unary()
parsing a symbol identifier.
If the destination is an indirect pointer access (which ends up
as VT_LLOCAL) the intermediate pointer must be loaded as VT_PTR,
not as whatever the pointed to type is.
If a condition is always zero/non-zero we can omit the
then or else code. This is complicated a bit by having to
deal with labels that might make such code reachable without
us yet knowing during parsing.
In statement expression we really mustn't emit backward jumps
under nocode_wanted (they will form infinte loops as no expressions
are evaluated). Do-while and explicit loop with gotos weren't
handled.
This happens when e.g. string constants (or other static data)
are passed as operands to inline asm as immediates. The produced
symbol ref wouldn't be found. So tighten the connection between
C and asm-local symbol table even more.
Our preprocessor throws away # line-comments in asm mode.
It did so also inside preprocessor directives, thereby
removing stringification. Parse defines in non-asm mode (but
retain '.' as identifier character inside macro definitions).
The return value of statement expressions might refer to local
symbols, so those can't be popped. The old error message always
was just a band-aid, and since disabling it for pointer types it
wasn't effective anyway. It also never considered that also the
vtop->sym member might have referred to such symbols (see the
testcase with the local static, that used to segfault).
For fixing this (can be seen better with valgrind and SYM_DEBUG)
simply leave local symbols of stmt exprs on the stack.
The include directive needs to be parsed as pp-tokens, not
as token (i.e. no conversion to TOK_STR or TOK_NUM). Also fix
parsing computed includes using quoted strings.
That, as well as "sym = expr", if expr contains symbols.
Slightly tricky because a definition from .set is overridable,
whereas proper definitions aren't.
This doesn't yet allow using this for override tricks from C
and global asm blocks because the symbol tables from C and asm
are separate.
But like GCC do warn about changes in signedness. The latter
leads to some changes in gen_assign_cast to not also warn about
unsigned* = int*
(where GCC warns, but only with extra warnings).
This requires correctly handling the REX prefix.
As bonus we now also support the four 8bit registers
spl,bpl,sil,dil, which are decoded as ah,ch,dh,bh in non-long-mode
(and require a REX prefix as well).
For
union U { struct {int a,b}; int c; };
union U u = {{ 1, 2, }};
The unnamed first member of union U needs to actually exist in the
structure so initializer parsing isn't confused about the double braces.
That means also the a and b members must be part of _that_, not of
union U directly. Which in turn means we need to do a bit more work
for field lookup.
See the testcase extension for more things that need to work.
Remove dead code and variables. Properly check for unions when
skipping fields in initializers. Make tests2/*.expect depend
on the .c files so they are automatically rebuilt when the latter
change.
E.g. "struct { struct S s; int a;} = { others, 42 };"
if 'others' is also a 'struct S'. Also when the value is a
compound literal. See added testcases.
This snippet is valid:
void foo(void);
... foo + 42 ...
the function designator is converted to pointer to function
implicitely. gen_op didn't do that and bailed out.
This must compile:
typedef int arrtype1[];
arrtype1 sinit19 = {1};
arrtype1 sinit20 = {2,3};
and generate two arrays of one resp. two elements. Before the fix
the determined size of the first array was encoded in the type
directly, so sinit20 couldn't be parsed anymore (because arrtype1
was thought to be only one element long).