add some features for more complete 'long' support
tcc.h:
- use LONG_SIZE=4/8 instead of TCC_LONG_ARE_64_BIT
tccgen.c:
- add ptrdiff_type, update size_type
- support shift and ?: operations
- support long enum types
- display 'long' from type_to_str
- nwchar_t is unsigned short on windows
- unrelated: use memcpy in init_putv for long doubles to avoid
random bytes in the image (if tcc was compiled by gcc) for
diff purposes.
tccpp.c:
- make parse_number return correct types
- improve multi-character-constants 'XX' 'abcd'
Changelog:
- update
Too simple long parsion.
Take me a long long long time to see my mistake,
Sorry
(long long long wasn't see as an error)
This reverts commit a4cd2805f9.
tccgen.c:
doubles need to be aligned, on ARM. The section_reserve()
in init_putv does not do that.
-D ONE_SOURCE: is now the default and not longer needed. Also,
tcc.h now sets the default native target. These both make
compiling tcc simple as "gcc tcc.c -o tcc -ldl" again.
arm-asm.c:
enable pseudo asm also for inline asm
tests/tests2/Makefile:
disable bitfield tests except on windows and x86_64
and don't generate-always
tcc.c:
fix a loop with -dt on errors
configure:
print compiler version (as recognized)
tccpp.c:
actually define symbols for tcc -dt
clear static variables (needed for -dt or libtcc usage)
96_nodata_wanted.c:
use __label__ instead of asm
lib/files:
use native symbols (__i386__ etc.) instead of TCC_TARGET_...
* check that _Generic don't match unsigned char * with char *
this case is usefull as with -funsigned-char, 'char *' are unsigned
* change VT_LONG so it's now a qualifier
VT_LONG are never use for code generation, but only durring parsing state,
in _Generic we need to be able to make diference between
'long' and 'long long'
So VT_LONG is now use as a type qualifier, it's old behaviour is still
here, but we can keep trace of what was a long and what wasn't
* add TOK_CLONG and TOK_CULONG
tcc was directly converting value like '7171L' into TOK_CLLONG or
TOK_CINT depending of the machine architecture.
because of that, we was unable to make diference between a long and a
long long, which doesn't work with _Generic.
So now 7171L is a TOK_CLONG, and we can handle _Generic properly
* check that _Generic can make diference between long and long long
* uncomment "type match twice" as it should now pass tests on any platforms
* add inside_generic global
the point of this variable is to use VT_LONG in comparaison only
when we are evaluating a _Generic.
problem is with my lastest patchs tcc can now make the diference between
a 'long long' and a 'long', but in 64 bit stddef.h typedef uint64_t as
typedef signed long long int int64_t and stdint.h as unsigned long int, so tcc
break when stdint.h and stddef.h are include together.
Another solution woud be to modifie include/stddef.h so it define uint64_t as
unsigned long int when processor is 64 bit, but this could break some
legacy code, so for now, VT_LONG are use only inside generc.
* check that _Generic parse first argument correctly
* check that _Generic evaluate correctly exresion like "f() / 2"
* -dt now with lowercase t
* test snippets now separated by real preprocessor statements
which is valid C also for other compilers
#if defined test_xxx
< test snippet x >
#elif defined test_yyy
< test snippet y >
#elif ...
#endif
* simpler implementation, behaves like -run if no 'test_...' macros
are seen, works with -E too
* for demonstration I combined some of the small tests for errors
and warnings (56..63,74) in "60_errors_and_warnings.c"
Also:
* libtcc.c:
put tcc_preprocess() and tcc_assemble() under the setjmp clause
to let them return to caller after errors. This is for -dt -E.
* tccgen.c:
- get rid of save/restore_parse_state(), macro_ptr is saved
by begin_macro anyway, now line_num too.
- use expr_eq for parsing _Generic's controlling_type
- set nocode_wanted with const_wanted. too, This is to keep
VT_JMP on vtop when parsing preprocessor expressions.
* tccpp.c: tcc -E: suppress trailing whitespace from lines with
comments (that -E removes) such as
NO_GOTPLT_ENTRY,\t /* never generate ... */
The existing variable 'nocode_wanted' is now used to control
output of static data too. So...
(nocode_wanted == 0)
code and data (normal within functions)
(nocode_wanted < 0)
means: no code, but data (global or static data)
(nocode_wanted > 0)
means: no code and no data (code and data suppressed)
(nocode_wanted & 0xC0000000)
means: we're in declaration of static data
Also: new option '-dT' to be used with -run
tcc -dT -run file.c
This will look in file.c for certain comment-boundaries:
/*-* test-xxx: ...some description */
and then for each test below run it from memory. This way
various features and error messages can be tested with one
single file. See 96_nodata_wanted.c for an example.
Also: tccgen.c: one more bitfield fix
tccpp.c:
* #pragma comment(option,"-some-option")
to set commandline option from C code. May work only
for some options.
libtcc.c:
* option "-d1..9": sets a 'g_debug' global variable.
(for development)
tests2/Makefile:
* new make targets: tests2.37 / tests2.37+
run single test from tests2, optionally update .expect
* new variable GEN-ALWAYS to always generate certain .expects
* bitfields test
tccgen.c:
* bitfields: fix a bug and improve slightly more
* _Generic: ignore "type match twice"
The assembler uses the ->sym_scope member to walk up the symbols
until finding a non-automatic symbol. Since reordering the
members of Sym the sym_scope member contains a scope even for local
statics. Formerly the use of asm_label for statics was implicitely
clearing sym_scope, now we have to do that explicitely.
Add a testcase for that, and one I encountered when moving the
clearing of sym_scope too deep into the call chain (into put_extern_sym).
Like returned local variables also labels local to a statement expression
can be returned, and so their symbols must not be immediately freed
(though they need to be removed from the symbol table).
Use 2 level strategy to access packed bitfields cleanly:
1) Allow to override the original declaration type with
an auxilary "access type". This solves cases such as
struct {
...
unsigned f1:1;
};
by using VT_BYTE to access f1.
2) Allow byte-wise split accesses using two new functions
load/store_packed_bf. This solves any cases, also ones
such as
struct __attribute((packed)) _s {
unsigned x : 12;
unsigned char y : 7;
unsigned z : 28;
unsigned a: 3;
unsigned b: 3;
unsigned c: 3;
};
where for field 'z':
- VT_INT access from offset 2 would be unaligned
- VT_LLONG from offset 0 would go past the total
struct size (7)
and for field 'a' because it is in two bytes and
aligned access with VT_SHORT/INT is not possible.
Also, static bitfield initializers are stored byte-wise always.
Also, cleanup the struct_layout function a bit.
tcc.h:
* cleanup struct 'Sym'
* include some 'Attributes' into 'Sym'
* in turn get rid of VT_IM/EXPORT, VT_WEAK
* re-number VT_XXX flags
* replace some 'long' function args by 'int'
tccgen.c:
* refactor parse_btype()
- configure
* use aarch64 instead of arm64
- Makefile
* rename the custom include file to "config-extra.mak"
* Also avoid "rm -r /*" if $(tccdir) is empty
- pp/Makefile
* fix .expect generation with gcc
- tcc.h
* cleanup #defines for _MSC_VER
- tccgen.c:
* fix const-propagation for &,|
* fix anonymous named struct (ms-extension) and enable
-fms-extension by default
- i386-gen.c
* clear VT_DEFSIGN
- x86_64-gen.c/win64:
* fix passing structs in registers
* fix alloca (need to keep "func_scratch" below each alloca area on stack)
(This allows to compile a working gnu-make on win64)
- tccpp.c
* alternative approach to 37999a4fbf
This is to avoid some slowdown with ## token pasting.
* get_tok_str() : return <eof> for TOK_EOF
* -funsigned-char: apply to "string" literals as well
- tccpe/tools.c: -impdef: support both 32 and 64 bit dlls anyway
Simple implementation, I'm not even sure to respect C standart here,
but it should work with most use case.
This add an case in unary(), and generate TokString depending of _Generic
controlling exression, use begin_macro to "push"
the generated TokString, then call unary() again before exiting the switch
so the just add token are reevaluate again.
This reverts commit d4fe9aba3f.
I was confused by the fact that string literals aren't writable.
Nevertheless the type isn't const. As extension in GCC it's const
with -Wwrite-string, which is exactly what we had before.
GCC also wonders in a comment if it's really a good idea to change
expression types based on warning flags (IMHO it's not), but let's
be compatible. So restore the state from before.
Don't make the standard mandated types of string literals
depends on warning options. Instead make them always const,
but limit the emission of the warning by that option.
Only warn if the struct has a non-zero size. You can't create objects
of zero-sized structs, but they can be used inside sizeof (e.g.
"sizeof (struct {int :0;})". The warning would always trigger for these,
but as no objects can be created no accesses can ever happen.
- configure:
- add --config-uClibc,-musl switch and suggest to use
it if uClibc/musl is detected
- make warning options magic clang compatible
- simplify (use $confvars instead of individual options)
- Revert "Remove some unused-parameter lint"
7443db0d5f
rather use -Wno-unused-parameter (or just not -Wextra)
- #ifdef functions that are unused on some targets
- tccgen.c: use PTR_SIZE==8 instead of (X86_64 || ARM64)
- tccpe.c: fix some warnings
- integrate dummy arm-asm better
For integer promotion with for example arithmetics or
expr_cond (x ? y : z), integral types need to be promoted
to signed if they fit.
According to latest standards, this also applies to bit-field
types taking into account their specific width.
In tcc, VT_BITFIELD set means width < original type width
Field-widths between 33 and 63 are promoted to signed long long
accordingly.
struct { unsigned long long ullb:35; } s = { 1 };
#define X (s.ullb - 2)
int main (void)
{
long long Y = X;
printf("%d %016llx %016llx\n", X < 0, -X, -Y);
return 0;
}
Results:
GCC 4.7 : 0 0000000000000001 FFFFFFF800000001
MSVC : 1 0000000000000001 0000000000000001
TCC : 1 0000000000000001 0000000000000001
Also, gcc would promote long long bitfields of size < 32
to int as well. Example:
struct { unsigned long long x:20; } t = { 123 };
/* with gcc: */ printf("%d %d\n", t.x, 456);
/* with tcc: */ printf("%lld %d\n", t.x, 456);
bit_pos + bit_size > type_size * 8
must NEVER happen because the code generator can read/write
only the basic integral types.
Warn if tcc has to break GCC compatibility for that reason
and if -Wgcc-compat is given.
Example:
struct __attribute__((packed)) _s
{
unsigned int x : 12;
unsigned char y : 7;
unsigned int z : 28;
};
Expected (GCC) layout (sizeof struct = 6)
.xxxxxxxx.xxxxyyyy.yyyzzzzz.zzzzzzzz.zzzzzzzz.zzzzzzz0.
But we cannot read/write 'char y'from 2 bytes in memory.
So we have to adjust:
.xxxxxxxx.xxxx0000.yyyyyyyz.zzzzzzzz.zzzzzzzz.zzzzzzzz.zzz00000
Now 'int z' cannot be accessed from 5 bytes. So we arrive
at this (sizeof struct = 7):
.xxxxxxxx.xxxx0000.yyyyyyy0.zzzzzzzz.zzzzzzzz.zzzzzzzz.zzzz0000
Otherwise the bitfield load/store generator needs to be
changed to allow byte-wise accesses.
Also we may touch memory past the struct in some cases
currently. The patch adds a warning for that too.
0: 55 push %ebp
1: 89 e5 mov %esp,%ebp
3: 81 ec 04 00 00 00 sub $0x4,%esp
9: 90 nop
struct __attribute__((packed)) { unsigned x : 5; } b = {0} ;
a: 8b 45 ff mov -0x1(%ebp),%eax
d: 83 e0 e0 and $0xffffffe0,%eax
10: 89 45 ff mov %eax,-0x1(%ebp)
This touches -0x1 ... +0x3(%ebp), hence 3 bytes beyond
stack space. Since the data is not changed, nothing
else happens here.
* tccgen: re-allow long double constants for x87 cross
sizeof (long double) may be 12 or 16 depending on host platform
(i386/x86_64 on unix/windows).
Except that it's 8 if the host is on windows and not gcc
was used to compile tcc.
* win64: fix builtin_va_start after VT_REF removal
See also a8b83ce43a
* tcctest.c: remove outdated limitation for ll-bitfield test
It always worked, there is no reason why it should not work
in future.
* libtcc1.c: exclude long double conversion on ARM
* Makefile: remove CFLAGS from link recipes
* lib/Makefile: use target DEFINES as passed from main Makefile
* lib/armflush.c lib/va_list.c: factor out from libtcc1.c
* arm-gen.c: disable "depreciated" warnings for now
'extern int i = 42;' at file scope (but not in function scope!) is
allowed and is a proper definition, even though questionable style;
some compilers warn about this.
See the added testcase. When one used designators like .a.x to initialize
sub-members of members, and didn't then initialize all of them the
required zero-initialization of the other sub-members wasn't done.
The fix also enables tiny code cleanups.
See testcase. If an enum has only positive values, fits N bits,
and is placed in a N-bit bit-field that bit-fields must be treated
as unsigned, not signed.
This invalid function definition:
int f()[] {}
was tried to be handled but there was no testcase if it actually worked.
This fixes it and adds a TCC only testcase.
introduce common_section (SHN_COMMON), factorize some handling
in decl_initializer_alloc, add section_add and use it to factorize
some code that allocates stuff in sections (at the same time also fixing
harmless bugs re section alignment), use init_putv to emit float consts
into .data from gv() (fixing an XXX).
factor code a bit for transforming tokens into SValues. This revealed
a bug in TOK_GET (see testcase), which happened to be harmless before.
So fix that as well.
The canonical way to describe a local variable that actually holds
the address of an lvalue is VT_LLOCAL. Remove the last user of VT_REF,
and handling of it, thereby freeing a flag for SValue.r.
VT_LLOCAL is a flag on .r, not on type.t. Fixing this requires
minor surgery for compound literals which accidentally happened
to be subsumed by the bogus test.
the second argument can be an arbitrary expression (including
side-effects), not just a constant. This removes the last user
of expr_lor_const and hence also that function (and expr_land_const).
Also the argument to __builtin_constant_p can be only a non-comma
expression (like all functions arguments).