In the linux kernel sources:
#ifdef __STDC__
#define SYMBOL_NAME_LABEL(X) X##:
#else
#define SYMBOL_NAME_LABEL(X) X/**/:
#endif
tcc is a STDC compiler and must handle 'X##:' case.
* fix some macro expansion issues
* add some pp tests in tests/pp
* improved tcc -E output for better diff'ability
* remove -dD feature (quirky code, exotic feature,
didn't work well)
Based partially on ideas / researches from PipCet
Some issues remain with VA_ARGS macros (if used in a
rather tricky way).
Also, to keep it simple, the pp doesn't automtically
add any extra spaces to separate tokens which otherwise
would form wrong tokens if re-read from tcc -E output
(such as '+' '=') GCC does that, other compilers don't.
* cleanups
- #line 01 "file" / # 01 "file" processing
- #pragma comment(lib,"foo")
- tcc -E: forward some pragmas to output (pack, comment(lib))
- fix macro parameter list parsing mess from
a3fc543459a715d7143d
(some coffee might help, next time ;)
- introduce TOK_PPSTR - to have character constants as
written in the file (similar to TOK_PPNUM)
- allow '\' appear in macros
- new functions begin/end_macro to:
- fix switching macro levels during expansion
- allow unget_tok to unget more than one tok
- slight speedup by using bitflags in isidnum_table
Also:
- x86_64.c : fix decl after statements
- i386-gen,c : fix a vstack leak with VLA on windows
- configure/Makefile : build on windows (MSYS) was broken
- tcc_warning: fflush stderr to keep output order (win32)
This requires moving TOK_PLCHLDR handling, but the new logic should make
things easier even if (when?) GNU comma handling is removed.
(Somewhat confusingly, GCC no longer supports GNU commas. See
http://gcc.gnu.org/onlinedocs/cpp/Variadic-Macros.html for a description
of past and current GCC behaviour.)
Fix handling of escape characters, spaces, and line feeds in macros or
macro arguments that might yet be subject to # stringification.
Should this be an -f option? I think memory usage increases only very
slightly (in particular, while line feeds, stray \s, and spaces are
preserved, comments are not), so it's probably not worth it to make it
one.
Note that macro_subst now checks for stray \s which are still left in
the input stream after macro substitution, if desired.
This patch depends on the previous patch, so if you revert that, please
revert this patch, too.
See http://lists.nongnu.org/archive/html/tinycc-devel/2015-05/msg00002.html
This adds a PARSE_FLAG_ACCEPT_STRAYS parse flag to accept stray
backslashes in the source code, and uses it for pure preprocessing.
For absolutely correct behaviour of # stringification, we need to use
this flag when parsing macro definitions and in macro arguments, as
well; this patch does not yet do so. The test case for that is something
like
#define STRINGIFY2(x) #x
#define STRINGIFY(x) STRINGIFY2(x)
STRINGIFY(\n)
which should produce "\n", not a parse error or "\\n".
See http://lists.nongnu.org/archive/html/tinycc-devel/2015-05/msg00002.html
Perhaps a better fix would be to ensure tok is set to TOK_EOF rather
than 0 at the end of a macro stream.
This partially fixes test2 of the examples given in:
http://lists.nongnu.org/archive/html/tinycc-devel/2015-05/msg00002.html
It's still failing, but at least it's not running out of memory now.
The old code had an inverted condition, so
#define a(b)## b
would be accepted while
#define a(b,c) b ## ## c
would be rejected with the confusing error message "'##' invalid at
start of macro".
Quick fix for
http://lists.nongnu.org/archive/html/tinycc-devel/2015-04/msg00160.html.
I don't fully understand the intended semantics of when file->buf_ptr[0]
is valid, but the rest of the code doesn't have any obvious spots with
the same bug.
Feel free to revert this if I'm mistaken or we need to discuss this
change further.
- pop_macro incorrect with initially undefined macro
- horrible implementation (tcc_open_bf)
- crashes eventually (abuse of Sym->prev_tok)
- the (unrelated) asm_label part is the opposite of a fix
(Despite of its name this variable has nothing to do with
the built-in assembler)
This reverts commit 0c8447db79.
* give warning if pragma is unknown for tcc
* don't free asm_label in sym_free(),
it's a job of the asm_free_labels().
The above pragmas are used in the mingw headers.
Thise pragmas are implemented in gcc-4.5+ and current
clang.
library Cello: http://libcello.org/ which uses `$` and several
variations of as macros.
There is also RayLanguage which also uses it as a macro for a kind of
ObjC style message passing: https://github.com/kojiba/RayLanguage
This is a patch from Daniel Holden.
Lets assume that in *.S files a preprocessor directive
follow '#' char w/o spaces between. Otherwise there is
too many problems with the content of the comments.
* tell a right line number in error message
if a #line directive is wrong
* don't print an error message if we preprocess a .S file
and #line directive is wrong. This is the case of
the
# 4026 bytes
comment in *.S file.
* preprocess_skip: skip a line with
if (parse_flags & PARSE_FLAG_ASM_COMMENTS)
p = parse_line_comment(p);
if line starts with # and a preprocessor command not found.
A test program:
#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
# This repeats until either a device doesn't exist, or until
#endif
* remove a second definition of the TOK_FLAG_* and PARSE_FLAG_*
from the tccpp.c
in the same pass like
tcc -E one.c two.c three.c -o combined.i
This will allow to speed up a compilation process by using a commamd like
tcc -E *.c | tcc -o program.exe -xc -
It looks that multi-times initialization don't affect anything.
Only call to the free_defines(define_start) in tcc_preprocess()
is removed in assumption that free_defines(NULL) in
tcc_cleanup() will free all defines.
With this option on a defines are included into the output
(inside comments). This will allow to debug a problems like:
In file included from math.c:8:
In file included from /usr/include/math.h:43:
/usr/include/bits/nan.h:52: warning: NAN redefined
tcc -E -P
do not output a #line directive, a gcc compatible option
tcc -E -P1
don't follow a gcc preprocessor style and do output a standard
#line directive. In such case we don't lose a location info when
we going to compile a resulting file wtith a compiler not
understanding a gnu style line info.
A cpp from gcc do this.
A test case:
tcc -E tccasm.c -o tccasm.i
tcc -E tccasm.i -o tccasm.ii
After a patch the line numbers in tccasm.ii are the same
as in tccasm.i
* tccpp.c (parse_number): `shift' should be 1 while parsing binary
floating point number.
* tests/tests2/70_floating_point_literals.c: New test cases for
floating point number parsing.
As per grischka comment, always output a space after macro concatenation
instead of trying to detect if it's necessary as the current approach
has a huge cost.
This was going wrong (case TOK_LAND in unary: computed labels)
- vset(&s->type, VT_CONST | VT_SYM, 0);
- vtop->sym = s;
This does the right thing and is shorter:
+ vpushsym(&s->type, s);
Test case was:
int main(int argc, char **argv)
{
int x;
static void *label_return = &&lbl_return;
printf("label_return = %p\n", label_return);
goto *label_return; //<<<<< here segfault on linux X86_64 without the memset on vset
printf("unreachable\n");
lbl_return:
return 0;
}
Also::
- Rename "void* CValue.ptr" to more usable "addr_t ptr_offset"
and start to use it in obvious cases.
- use __attribute__ ((noreturn)) only with gnu compiler
- Revert CValue memsets ("After several days searching ...")
commit 4bc83ac393
Doesn't mean that the vsetX/vpush thingy isn't brittle and
there still might be bugs as to differences in how the CValue
union was set and is then interpreted later on.
However the big memset hammer was just too slow (-3% overall).