These relocations are used to express a dependency on a certain
symbol (e.g. for EABIs exception handling to the
__aeabi_unwind_cpp_pr{0,1,2} routines). Just ignore them in
reloc processing.
When output is memory we applied the correct GOT offset for certain
relocations (e.g. _GOT32), but we forgot to actually fill the got
entries with the final symbol values, so unconditionally create relocs
against .got as well.
This makes it so that the first PT_LOAD segment covers
ELF and program header and .interp (contained in the same page anyway,
right before the start of the first loaded section). binutils
strip creates invalid output otherwise (which strictly is a binutils
bug, but let's be nice anyway).
This correctly resolves local references to global functions from
shared libs to their PLT slot (instead of directly to the target
symbol), so that interposition works.
This is still not 100% conforming (executables don't export symbols
that are also defined in linked shared libs, as they must), but
normal shared lib situations work.
Introduce a new attribute to check the existence of a PLT entry for a
given symbol has the presence of an entry for that symbol in the dynsym
section is not proof that a PLT entry exists.
This fixes commit dc8ea93b13.
Some symbol (such as __gmon_start__ but this one does not matter to tcc)
can have both a R_386_GOT32 and R_386_PLT32 relocation. It is thus not
enough to test if a GOT reloc was already done when deciding whether to
return early from put_got_entry.
When bound check is enabled, tcc tries to relocate a call to
__bound_init in _init. This means that relocation (in tcc_add_bcheck)
must be done after libtcc1.a (which countains __bound_init) is loaded
but before crtn.o is loaded as this finalize _init.
Call fill_got_entry unconditionally from fill_got so as to avoid
warnings on !x86-64 architectures. This can be done since this code path
is only followed by x86-64 architecture anyway.
Variants __fixsfdi/__fixxfdi are not needed for now because
the value is converted to double always.
Also:
- remove __tcc_fpinit for unix as it seems redundant by the
__setfpucw call in the startup code
- avoid reference to s->runtime_main in cross compilers
- configure: fix --with-libgcc help
- tcctok.h: cleanup
When statically linking, runtime library should be static as well. tcc
could link with libgcc.a but it's in a gcc version specific directory.
Another solution, followed by this patch, is to use libtcc.a when
statically linking, even if USE_LIBGCC was configured.
TLS support in tinyCC is absolutely not ready:
- segment register not select in load and store
- no relocation added for computing offset of per-thread symbol
- no support for TLS-specific relocations
- no program header added as per Drepper document about TLS
This reverts commit 1c4afd1350.
This replaces -> use instead:
-----------------------------------
- tcc_set_linker -> tcc_set_options(s, "-Wl,...");
- tcc_set_warning -> tcc_set_options(s, "-W...");
- tcc_enable_debug -> tcc_set_options(s, "-g");
parse_args is moved to libtcc.c (now tcc_parse_args).
Also some cleanups:
- reorder TCCState members
- add some comments here and there
- do not use argv's directly, make string copies
- use const char* in tcc_set_linker
- tccpe: use fd instead of fp
tested with -D MEM_DEBUG: 0 bytes left
Should fix some warnings wrt. access out of array bounds.
tccelf.c: fix "static function unused" warning
x86_64-gen.c: fix "ctype.ref uninitialzed" warning and cleanup
tcc-win32.txt: remove obsolete limitation notes.
Also:
- fix "make tcc_p" (profiling version)
- remove old gcc flags:
-mpreferred-stack-boundary=2 -march=i386 -falign-functions=0
- remove test "hello" for Darwin (cannot compile to file)
With:
tcc -g hello.c
gdb a.out
b main
gdb refused to know "main" because of broken dwarf info.
This partially reverts commit 0d598aca08.
I don't remember what the problem was but it was the wrong way
to fix it.
Fix overflow detection for R_ARM_CALL, R_ARM_PC24, R_ARM_JUMP24 and
R_ARM_PLT32 relocations on ARM. 26 bits means 25 bits for positive and
negative offsets !
Indirect functions shall have STT_FUNC type in executable dynsym
section. Indeed, a dlsym call following a lazy resolution would pick the
symbol value from the executable dynsym entry. This would contain the
address of the function wanted by the caller of dlsym instead of the
address of the function that would return that address.