make/misc.c

872 lines
20 KiB
C
Raw Normal View History

1994-03-23 22:12:55 +08:00
/* Miscellaneous generic support functions for GNU Make.
Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1997,
2002 Free Software Foundation, Inc.
1991-10-08 06:04:20 +08:00
This file is part of GNU Make.
GNU Make is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU Make is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Make; see the file COPYING. If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
1991-10-08 06:04:20 +08:00
#include "make.h"
#include "dep.h"
#include "debug.h"
1991-10-08 06:04:20 +08:00
1998-10-03 13:39:55 +08:00
/* Variadic functions. We go through contortions to allow proper function
prototypes for both ANSI and pre-ANSI C compilers, and also for those
which support stdarg.h vs. varargs.h, and finally those which have
vfprintf(), etc. and those who have _doprnt... or nothing.
This fancy stuff all came from GNU fileutils, except for the VA_PRINTF and
VA_END macros used here since we have multiple print functions. */
#if USE_VARIADIC
# if HAVE_STDARG_H
1998-10-03 13:39:55 +08:00
# include <stdarg.h>
# define VA_START(args, lastarg) va_start(args, lastarg)
# else
# include <varargs.h>
# define VA_START(args, lastarg) va_start(args)
# endif
# if HAVE_VPRINTF
# define VA_PRINTF(fp, lastarg, args) vfprintf((fp), (lastarg), (args))
# else
# define VA_PRINTF(fp, lastarg, args) _doprnt((lastarg), (args), (fp))
# endif
# define VA_END(args) va_end(args)
#else
/* We can't use any variadic interface! */
1998-10-03 13:39:55 +08:00
# define va_alist a1, a2, a3, a4, a5, a6, a7, a8
# define va_dcl char *a1, *a2, *a3, *a4, *a5, *a6, *a7, *a8;
# define VA_START(args, lastarg)
2000-06-20 13:48:40 +08:00
# define VA_PRINTF(fp, lastarg, args) fprintf((fp), (lastarg), va_alist)
1998-10-03 13:39:55 +08:00
# define VA_END(args)
#endif
1991-10-08 06:04:20 +08:00
/* Compare strings *S1 and *S2.
Return negative if the first is less, positive if it is greater,
zero if they are equal. */
int
alpha_compare (const void *v1, const void *v2)
1991-10-08 06:04:20 +08:00
{
1998-10-03 13:39:55 +08:00
const char *s1 = *((char **)v1);
const char *s2 = *((char **)v2);
if (*s1 != *s2)
return *s1 - *s2;
return strcmp (s1, s2);
1991-10-08 06:04:20 +08:00
}
/* Discard each backslash-newline combination from LINE.
Backslash-backslash-newline combinations become backslash-newlines.
This is done by copying the text at LINE into itself. */
void
collapse_continuations (char *line)
1991-10-08 06:04:20 +08:00
{
register char *in, *out, *p;
register int backslash;
register unsigned int bs_write;
in = strchr (line, '\n');
1991-10-08 06:04:20 +08:00
if (in == 0)
return;
out = in;
while (out > line && out[-1] == '\\')
--out;
1991-10-08 06:04:20 +08:00
while (*in != '\0')
{
/* BS_WRITE gets the number of quoted backslashes at
the end just before IN, and BACKSLASH gets nonzero
if the next character is quoted. */
backslash = 0;
bs_write = 0;
for (p = in - 1; p >= line && *p == '\\'; --p)
{
if (backslash)
++bs_write;
backslash = !backslash;
/* It should be impossible to go back this far without exiting,
but if we do, we can't get the right answer. */
if (in == out - 1)
abort ();
}
/* Output the appropriate number of backslashes. */
while (bs_write-- > 0)
*out++ = '\\';
/* Skip the newline. */
++in;
/* If the newline is quoted, discard following whitespace
and any preceding whitespace; leave just one space. */
if (backslash)
{
in = next_token (in);
while (out > line && isblank ((unsigned char)out[-1]))
1991-10-08 06:04:20 +08:00
--out;
*out++ = ' ';
}
else
/* If the newline isn't quoted, put it in the output. */
*out++ = '\n';
/* Now copy the following line to the output.
Stop when we find backslashes followed by a newline. */
while (*in != '\0')
if (*in == '\\')
{
p = in + 1;
while (*p == '\\')
++p;
if (*p == '\n')
{
in = p;
break;
}
while (in < p)
*out++ = *in++;
}
else
*out++ = *in++;
}
*out = '\0';
}
/* Print N spaces (used in debug for target-depth). */
1991-10-08 06:04:20 +08:00
void
print_spaces (unsigned int n)
1991-10-08 06:04:20 +08:00
{
while (n-- > 0)
putchar (' ');
}
/* Return a newly-allocated string whose contents
concatenate those of s1, s2, s3. */
char *
concat (const char *s1, const char *s2, const char *s3)
1991-10-08 06:04:20 +08:00
{
unsigned int len1, len2, len3;
char *result;
1991-10-08 06:04:20 +08:00
len1 = *s1 != '\0' ? strlen (s1) : 0;
len2 = *s2 != '\0' ? strlen (s2) : 0;
len3 = *s3 != '\0' ? strlen (s3) : 0;
result = (char *) xmalloc (len1 + len2 + len3 + 1);
if (*s1 != '\0')
bcopy (s1, result, len1);
if (*s2 != '\0')
bcopy (s2, result + len1, len2);
if (*s3 != '\0')
bcopy (s3, result + len1 + len2, len3);
*(result + len1 + len2 + len3) = '\0';
return result;
}
/* Print a message on stdout. */
void
#if HAVE_ANSI_COMPILER && USE_VARIADIC && HAVE_STDARG_H
1998-10-03 13:39:55 +08:00
message (int prefix, const char *fmt, ...)
#else
message (prefix, fmt, va_alist)
int prefix;
1998-10-03 13:39:55 +08:00
const char *fmt;
va_dcl
#endif
1991-10-08 06:04:20 +08:00
{
#if USE_VARIADIC
1998-10-03 13:39:55 +08:00
va_list args;
#endif
log_working_directory (1);
1998-10-03 13:39:55 +08:00
if (fmt != 0)
{
if (prefix)
{
if (makelevel == 0)
printf ("%s: ", program);
else
printf ("%s[%u]: ", program, makelevel);
}
1998-10-03 13:39:55 +08:00
VA_START (args, fmt);
VA_PRINTF (stdout, fmt, args);
VA_END (args);
putchar ('\n');
}
1991-10-08 06:04:20 +08:00
fflush (stdout);
}
1998-10-03 13:39:55 +08:00
/* Print an error message. */
1991-10-08 06:04:20 +08:00
void
#if HAVE_ANSI_COMPILER && USE_VARIADIC && HAVE_STDARG_H
1998-10-03 13:39:55 +08:00
error (const struct floc *flocp, const char *fmt, ...)
#else
error (flocp, fmt, va_alist)
const struct floc *flocp;
const char *fmt;
va_dcl
#endif
1991-10-08 06:04:20 +08:00
{
#if USE_VARIADIC
1998-10-03 13:39:55 +08:00
va_list args;
#endif
1991-10-08 06:04:20 +08:00
log_working_directory (1);
1998-10-03 13:39:55 +08:00
if (flocp && flocp->filenm)
fprintf (stderr, "%s:%lu: ", flocp->filenm, flocp->lineno);
else if (makelevel == 0)
1991-10-08 06:04:20 +08:00
fprintf (stderr, "%s: ", program);
else
fprintf (stderr, "%s[%u]: ", program, makelevel);
1998-10-03 13:39:55 +08:00
VA_START(args, fmt);
VA_PRINTF (stderr, fmt, args);
VA_END (args);
1991-10-08 06:04:20 +08:00
putc ('\n', stderr);
fflush (stderr);
}
1998-10-03 13:39:55 +08:00
/* Print an error message and exit. */
1991-10-08 06:04:20 +08:00
void
#if HAVE_ANSI_COMPILER && USE_VARIADIC && HAVE_STDARG_H
1998-10-03 13:39:55 +08:00
fatal (const struct floc *flocp, const char *fmt, ...)
#else
fatal (flocp, fmt, va_alist)
const struct floc *flocp;
const char *fmt;
va_dcl
#endif
1991-10-08 06:04:20 +08:00
{
#if USE_VARIADIC
1998-10-03 13:39:55 +08:00
va_list args;
#endif
1998-07-31 04:54:47 +08:00
log_working_directory (1);
1998-10-03 13:39:55 +08:00
if (flocp && flocp->filenm)
fprintf (stderr, "%s:%lu: *** ", flocp->filenm, flocp->lineno);
else if (makelevel == 0)
fprintf (stderr, "%s: *** ", program);
else
fprintf (stderr, "%s[%u]: *** ", program, makelevel);
VA_START(args, fmt);
VA_PRINTF (stderr, fmt, args);
VA_END (args);
fputs (_(". Stop.\n"), stderr);
1991-10-08 06:04:20 +08:00
die (2);
1991-10-08 06:04:20 +08:00
}
1993-12-03 04:37:46 +08:00
#ifndef HAVE_STRERROR
1994-02-03 15:21:18 +08:00
#undef strerror
char *
strerror (int errnum)
1993-12-03 04:37:46 +08:00
{
extern int errno, sys_nerr;
#ifndef __DECC
1993-12-03 04:37:46 +08:00
extern char *sys_errlist[];
#endif
1993-12-03 04:37:46 +08:00
static char buf[] = "Unknown error 12345678901234567890";
if (errno < sys_nerr)
return sys_errlist[errnum];
sprintf (buf, _("Unknown error %d"), errnum);
1993-12-03 04:37:46 +08:00
return buf;
}
#endif
1991-10-08 06:04:20 +08:00
/* Print an error message from errno. */
void
perror_with_name (const char *str, const char *name)
1991-10-08 06:04:20 +08:00
{
error (NILF, _("%s%s: %s"), str, name, strerror (errno));
1991-10-08 06:04:20 +08:00
}
/* Print an error message from errno and exit. */
void
pfatal_with_name (const char *name)
1991-10-08 06:04:20 +08:00
{
fatal (NILF, _("%s: %s"), name, strerror (errno));
1991-10-08 06:04:20 +08:00
/* NOTREACHED */
}
/* Like malloc but get fatal error if memory is exhausted. */
/* Don't bother if we're using dmalloc; it provides these for us. */
#ifndef HAVE_DMALLOC_H
1991-10-08 06:04:20 +08:00
#undef xmalloc
#undef xrealloc
#undef xstrdup
1991-10-08 06:04:20 +08:00
char *
xmalloc (unsigned int size)
1991-10-08 06:04:20 +08:00
{
/* Make sure we don't allocate 0, for pre-ANSI libraries. */
char *result = (char *) malloc (size ? size : 1);
1991-10-08 06:04:20 +08:00
if (result == 0)
fatal (NILF, _("virtual memory exhausted"));
1991-10-08 06:04:20 +08:00
return result;
}
char *
xrealloc (char *ptr, unsigned int size)
1991-10-08 06:04:20 +08:00
{
char *result;
/* Some older implementations of realloc() don't conform to ANSI. */
if (! size)
size = 1;
result = ptr ? realloc (ptr, size) : malloc (size);
1991-10-08 06:04:20 +08:00
if (result == 0)
fatal (NILF, _("virtual memory exhausted"));
1991-10-08 06:04:20 +08:00
return result;
}
char *
xstrdup (const char *ptr)
{
char *result;
#ifdef HAVE_STRDUP
result = strdup (ptr);
#else
result = (char *) malloc (strlen (ptr) + 1);
#endif
if (result == 0)
fatal (NILF, _("virtual memory exhausted"));
#ifdef HAVE_STRDUP
return result;
#else
return strcpy(result, ptr);
#endif
}
#endif /* HAVE_DMALLOC_H */
1991-10-08 06:04:20 +08:00
char *
savestring (const char *str, unsigned int length)
1991-10-08 06:04:20 +08:00
{
register char *out = (char *) xmalloc (length + 1);
if (length > 0)
bcopy (str, out, length);
out[length] = '\0';
return out;
}
/* Limited INDEX:
Search through the string STRING, which ends at LIMIT, for the character C.
Returns a pointer to the first occurrence, or nil if none is found.
Like INDEX except that the string searched ends where specified
instead of at the first null. */
char *
lindex (const char *s, const char *limit, int c)
1991-10-08 06:04:20 +08:00
{
while (s < limit)
if (*s++ == c)
return (char *)(s - 1);
1991-10-08 06:04:20 +08:00
return 0;
}
/* Return the address of the first whitespace or null in the string S. */
char *
end_of_token (const char *s)
1991-10-08 06:04:20 +08:00
{
while (*s != '\0' && !isblank ((unsigned char)*s))
1994-03-04 13:10:20 +08:00
++s;
return (char *)s;
1991-10-08 06:04:20 +08:00
}
1997-04-07 15:21:16 +08:00
#ifdef WINDOWS32
Wed May 15 10:14:14 CDT 1996 Rob Tulloh <tulloh@tivoli.com> * dir.c: WIN32 does not support inode. For now, fully qualified pathname along with st_mtime will be keys for files. Fixed problem where vpath can be confused when files are added to a directory after the directory has already been read in. The code now attempts to reread the directory if it discovers that the datestamp on the directory has changed since it was cached by make. This problem only seems to occur on WIN32 right now so it is lumped under port #ifdef WIN32. * function.c: WIN32: call subproc library (CreateProcess()) instead of fork/exec. * job.c: WIN32: Added the code to do fork/exec/waitpid style processing on WIN32 systems via calls to subproc library. * main.c: WIN32: Several things added here. First, there is code for dealing with PATH and SHELL defaults. Make tries to figure out if the user has %PATH% set in the environment and sets it to %Path% if it is not set already. Make also looks to see if sh.exe is anywhere to be found. Code path through job.c will change based on existence of a working Bourne shell. The checking for default shell is done twice: once before makefiles are read in and again after. Fall back to MSDOS style execution mode if no sh.exe is found. Also added some debug support that allows user to pause make with -D switch and attach a debugger. This is especially useful for debugging recursive calls to make where problems appear only in the sub-make. * make.h: WIN32: A few macros and header files for WIN32 support. * misc.c: WIN32: Added a function end_of_token_w32() to assist in parsing code in read.c. * read.c: WIN32: Fixes similar to MSDOS which allow colon to appear in filenames. Use of colon in filenames would otherwise confuse make. * remake.c: WIN32: Added include of io.h to eliminate compiler warnings. Added some code to default LIBDIR if it is not set on WIN32. * variable.c: WIN32: Added support for detecting Path/PATH and converting them to semicolon separated lists for make's internal use. New function sync_Path_environment() which is called in job.c and function.c before creating a new process. Caller must set Path in environment since we don't have fork() to do this for us. * vpath.c: WIN32: Added detection for filenames containing forward or backward slashes. * NMakefile: WIN32: Visual C compatible makefile for use with nmake. Use this to build GNU make the first time on Windows NT or Windows 95. * README.WIN32: WIN32: Contains some helpful notes. * build_w32.bat: WIN32: If you don't like nmake, use this the first time you build GNU make on Windows NT or Windows 95. * config.h.WIN32: WIN32 version of config.h * subproc.bat: WIN32: A bat file used to build the subproc library from the top-level NMakefile. Needed because WIndows 95 (nmake) doesn't allow you to cd in a make rule. * w32/include/dirent.h * w32/compat/dirent.c: WIN32: opendir, readdir, closedir, etc. * w32/include/pathstuff.h: WIN32: used by files needed functions defined in pathstuff.c (prototypes). * w32/include/sub_proc.h: WIN32: prototypes for subproc.lib functions. * w32/include/w32err.h: WIN32: prototypes for w32err.c. * w32/pathstuff.c: WIN32: File and Path/Path conversion functions. * w32/subproc/build.bat: WIN32: build script for subproc library if you don't wish to use nmake. * w32/subproc/NMakefile: WIN32: Visual C compatible makefile for use with nmake. Used to build subproc library. * w32/subproc/misc.c: WIN32: subproc library support code * w32/subproc/proc.h: WIN32: subproc library support code * w32/subproc/sub_proc.c: WIN32: subproc library source code * w32/subproc/w32err.c: WIN32: subproc library support code
1996-05-23 05:51:45 +08:00
/*
* Same as end_of_token, but take into account a stop character
*/
char *
end_of_token_w32 (char *s, char stopchar)
Wed May 15 10:14:14 CDT 1996 Rob Tulloh <tulloh@tivoli.com> * dir.c: WIN32 does not support inode. For now, fully qualified pathname along with st_mtime will be keys for files. Fixed problem where vpath can be confused when files are added to a directory after the directory has already been read in. The code now attempts to reread the directory if it discovers that the datestamp on the directory has changed since it was cached by make. This problem only seems to occur on WIN32 right now so it is lumped under port #ifdef WIN32. * function.c: WIN32: call subproc library (CreateProcess()) instead of fork/exec. * job.c: WIN32: Added the code to do fork/exec/waitpid style processing on WIN32 systems via calls to subproc library. * main.c: WIN32: Several things added here. First, there is code for dealing with PATH and SHELL defaults. Make tries to figure out if the user has %PATH% set in the environment and sets it to %Path% if it is not set already. Make also looks to see if sh.exe is anywhere to be found. Code path through job.c will change based on existence of a working Bourne shell. The checking for default shell is done twice: once before makefiles are read in and again after. Fall back to MSDOS style execution mode if no sh.exe is found. Also added some debug support that allows user to pause make with -D switch and attach a debugger. This is especially useful for debugging recursive calls to make where problems appear only in the sub-make. * make.h: WIN32: A few macros and header files for WIN32 support. * misc.c: WIN32: Added a function end_of_token_w32() to assist in parsing code in read.c. * read.c: WIN32: Fixes similar to MSDOS which allow colon to appear in filenames. Use of colon in filenames would otherwise confuse make. * remake.c: WIN32: Added include of io.h to eliminate compiler warnings. Added some code to default LIBDIR if it is not set on WIN32. * variable.c: WIN32: Added support for detecting Path/PATH and converting them to semicolon separated lists for make's internal use. New function sync_Path_environment() which is called in job.c and function.c before creating a new process. Caller must set Path in environment since we don't have fork() to do this for us. * vpath.c: WIN32: Added detection for filenames containing forward or backward slashes. * NMakefile: WIN32: Visual C compatible makefile for use with nmake. Use this to build GNU make the first time on Windows NT or Windows 95. * README.WIN32: WIN32: Contains some helpful notes. * build_w32.bat: WIN32: If you don't like nmake, use this the first time you build GNU make on Windows NT or Windows 95. * config.h.WIN32: WIN32 version of config.h * subproc.bat: WIN32: A bat file used to build the subproc library from the top-level NMakefile. Needed because WIndows 95 (nmake) doesn't allow you to cd in a make rule. * w32/include/dirent.h * w32/compat/dirent.c: WIN32: opendir, readdir, closedir, etc. * w32/include/pathstuff.h: WIN32: used by files needed functions defined in pathstuff.c (prototypes). * w32/include/sub_proc.h: WIN32: prototypes for subproc.lib functions. * w32/include/w32err.h: WIN32: prototypes for w32err.c. * w32/pathstuff.c: WIN32: File and Path/Path conversion functions. * w32/subproc/build.bat: WIN32: build script for subproc library if you don't wish to use nmake. * w32/subproc/NMakefile: WIN32: Visual C compatible makefile for use with nmake. Used to build subproc library. * w32/subproc/misc.c: WIN32: subproc library support code * w32/subproc/proc.h: WIN32: subproc library support code * w32/subproc/sub_proc.c: WIN32: subproc library source code * w32/subproc/w32err.c: WIN32: subproc library support code
1996-05-23 05:51:45 +08:00
{
register char *p = s;
register int backslash = 0;
while (*p != '\0' && *p != stopchar
&& (backslash || !isblank ((unsigned char)*p)))
Wed May 15 10:14:14 CDT 1996 Rob Tulloh <tulloh@tivoli.com> * dir.c: WIN32 does not support inode. For now, fully qualified pathname along with st_mtime will be keys for files. Fixed problem where vpath can be confused when files are added to a directory after the directory has already been read in. The code now attempts to reread the directory if it discovers that the datestamp on the directory has changed since it was cached by make. This problem only seems to occur on WIN32 right now so it is lumped under port #ifdef WIN32. * function.c: WIN32: call subproc library (CreateProcess()) instead of fork/exec. * job.c: WIN32: Added the code to do fork/exec/waitpid style processing on WIN32 systems via calls to subproc library. * main.c: WIN32: Several things added here. First, there is code for dealing with PATH and SHELL defaults. Make tries to figure out if the user has %PATH% set in the environment and sets it to %Path% if it is not set already. Make also looks to see if sh.exe is anywhere to be found. Code path through job.c will change based on existence of a working Bourne shell. The checking for default shell is done twice: once before makefiles are read in and again after. Fall back to MSDOS style execution mode if no sh.exe is found. Also added some debug support that allows user to pause make with -D switch and attach a debugger. This is especially useful for debugging recursive calls to make where problems appear only in the sub-make. * make.h: WIN32: A few macros and header files for WIN32 support. * misc.c: WIN32: Added a function end_of_token_w32() to assist in parsing code in read.c. * read.c: WIN32: Fixes similar to MSDOS which allow colon to appear in filenames. Use of colon in filenames would otherwise confuse make. * remake.c: WIN32: Added include of io.h to eliminate compiler warnings. Added some code to default LIBDIR if it is not set on WIN32. * variable.c: WIN32: Added support for detecting Path/PATH and converting them to semicolon separated lists for make's internal use. New function sync_Path_environment() which is called in job.c and function.c before creating a new process. Caller must set Path in environment since we don't have fork() to do this for us. * vpath.c: WIN32: Added detection for filenames containing forward or backward slashes. * NMakefile: WIN32: Visual C compatible makefile for use with nmake. Use this to build GNU make the first time on Windows NT or Windows 95. * README.WIN32: WIN32: Contains some helpful notes. * build_w32.bat: WIN32: If you don't like nmake, use this the first time you build GNU make on Windows NT or Windows 95. * config.h.WIN32: WIN32 version of config.h * subproc.bat: WIN32: A bat file used to build the subproc library from the top-level NMakefile. Needed because WIndows 95 (nmake) doesn't allow you to cd in a make rule. * w32/include/dirent.h * w32/compat/dirent.c: WIN32: opendir, readdir, closedir, etc. * w32/include/pathstuff.h: WIN32: used by files needed functions defined in pathstuff.c (prototypes). * w32/include/sub_proc.h: WIN32: prototypes for subproc.lib functions. * w32/include/w32err.h: WIN32: prototypes for w32err.c. * w32/pathstuff.c: WIN32: File and Path/Path conversion functions. * w32/subproc/build.bat: WIN32: build script for subproc library if you don't wish to use nmake. * w32/subproc/NMakefile: WIN32: Visual C compatible makefile for use with nmake. Used to build subproc library. * w32/subproc/misc.c: WIN32: subproc library support code * w32/subproc/proc.h: WIN32: subproc library support code * w32/subproc/sub_proc.c: WIN32: subproc library source code * w32/subproc/w32err.c: WIN32: subproc library support code
1996-05-23 05:51:45 +08:00
{
if (*p++ == '\\')
{
backslash = !backslash;
while (*p == '\\')
{
backslash = !backslash;
++p;
}
}
else
backslash = 0;
}
return p;
}
#endif
1991-10-08 06:04:20 +08:00
/* Return the address of the first nonwhitespace or null in the string S. */
char *
next_token (const char *s)
1991-10-08 06:04:20 +08:00
{
while (isblank ((unsigned char)*s))
++s;
return (char *)s;
1991-10-08 06:04:20 +08:00
}
/* Find the next token in PTR; return the address of it, and store the
length of the token into *LENGTHPTR if LENGTHPTR is not nil. */
char *
find_next_token (char **ptr, unsigned int *lengthptr)
1991-10-08 06:04:20 +08:00
{
char *p = next_token (*ptr);
char *end;
if (*p == '\0')
return 0;
*ptr = end = end_of_token (p);
if (lengthptr != 0)
*lengthptr = end - p;
return p;
}
/* Copy a chain of `struct dep', making a new chain
with the same contents as the old one. */
struct dep *
copy_dep_chain (const struct dep *d)
1991-10-08 06:04:20 +08:00
{
register struct dep *c;
struct dep *firstnew = 0;
1998-07-31 04:54:47 +08:00
struct dep *lastnew = 0;
1991-10-08 06:04:20 +08:00
while (d != 0)
{
c = (struct dep *) xmalloc (sizeof (struct dep));
bcopy ((char *) d, (char *) c, sizeof (struct dep));
if (c->name != 0)
c->name = xstrdup (c->name);
1991-10-08 06:04:20 +08:00
c->next = 0;
if (firstnew == 0)
firstnew = lastnew = c;
else
lastnew = lastnew->next = c;
d = d->next;
}
return firstnew;
}
/* Free a chain of 'struct dep'. */
void
free_dep_chain (struct dep *d)
{
while (d != 0)
{
struct dep *df = d;
d = d->next;
free (df->name);
free ((char *)df);
}
}
1991-10-08 06:04:20 +08:00
/* Free a chain of `struct nameseq'. Each nameseq->name is freed
as well. Can be used on `struct dep' chains.*/
void
free_ns_chain (struct nameseq *n)
{
register struct nameseq *tmp;
while (n != 0)
{
if (n->name != 0)
free (n->name);
tmp = n;
n = n->next;
free (tmp);
}
}
1991-10-08 06:04:20 +08:00
#ifdef iAPX286
/* The losing compiler on this machine can't handle this macro. */
char *
dep_name (struct dep *dep)
1991-10-08 06:04:20 +08:00
{
return dep->name == 0 ? dep->file->name : dep->name;
}
#endif
1993-01-12 03:45:54 +08:00
#ifdef GETLOADAVG_PRIVILEGED
1994-02-17 05:25:32 +08:00
#ifdef POSIX
1994-02-17 05:25:32 +08:00
/* Hopefully if a system says it's POSIX.1 and has the setuid and setgid
functions, they work as POSIX.1 says. Some systems (Alpha OSF/1 1.2,
for example) which claim to be POSIX.1 also have the BSD setreuid and
setregid functions, but they don't work as in BSD and only the POSIX.1
way works. */
#undef HAVE_SETREUID
#undef HAVE_SETREGID
#else /* Not POSIX. */
/* Some POSIX.1 systems have the seteuid and setegid functions. In a
POSIX-like system, they are the best thing to use. However, some
non-POSIX systems have them too but they do not work in the POSIX style
and we must use setreuid and setregid instead. */
#undef HAVE_SETEUID
#undef HAVE_SETEGID
#endif /* POSIX. */
1994-02-17 05:25:32 +08:00
1992-06-11 12:58:15 +08:00
#ifndef HAVE_UNISTD_H
1991-10-08 06:04:20 +08:00
extern int getuid (), getgid (), geteuid (), getegid ();
extern int setuid (), setgid ();
#ifdef HAVE_SETEUID
extern int seteuid ();
#else
1993-01-23 05:32:00 +08:00
#ifdef HAVE_SETREUID
extern int setreuid ();
#endif /* Have setreuid. */
#endif /* Have seteuid. */
#ifdef HAVE_SETEGID
extern int setegid ();
#else
1993-01-23 05:32:00 +08:00
#ifdef HAVE_SETREGID
extern int setregid ();
#endif /* Have setregid. */
#endif /* Have setegid. */
1992-06-11 12:58:15 +08:00
#endif /* No <unistd.h>. */
1991-10-08 06:04:20 +08:00
/* Keep track of the user and group IDs for user- and make- access. */
static int user_uid = -1, user_gid = -1, make_uid = -1, make_gid = -1;
#define access_inited (user_uid != -1)
static enum { make, user } current_access;
1993-04-15 04:43:53 +08:00
/* Under -d, write a message describing the current IDs. */
static void
log_access (char *flavor)
1993-04-15 04:43:53 +08:00
{
if (! ISDB (DB_JOBS))
1993-04-15 04:43:53 +08:00
return;
1993-08-02 04:03:45 +08:00
/* All the other debugging messages go to stdout,
but we write this one to stderr because it might be
run in a child fork whose stdout is piped. */
fprintf (stderr, _("%s: user %lu (real %lu), group %lu (real %lu)\n"),
1998-07-31 04:54:47 +08:00
flavor, (unsigned long) geteuid (), (unsigned long) getuid (),
(unsigned long) getegid (), (unsigned long) getgid ());
1993-08-02 04:03:45 +08:00
fflush (stderr);
1993-04-15 04:43:53 +08:00
}
1991-10-08 06:04:20 +08:00
static void
init_access (void)
1991-10-08 06:04:20 +08:00
{
#ifndef VMS
1991-10-08 06:04:20 +08:00
user_uid = getuid ();
user_gid = getgid ();
make_uid = geteuid ();
make_gid = getegid ();
/* Do these ever fail? */
if (user_uid == -1 || user_gid == -1 || make_uid == -1 || make_gid == -1)
pfatal_with_name ("get{e}[gu]id");
log_access (_("Initialized access"));
1993-04-15 04:43:53 +08:00
1991-10-08 06:04:20 +08:00
current_access = make;
#endif
1991-10-08 06:04:20 +08:00
}
1993-01-12 03:45:54 +08:00
#endif /* GETLOADAVG_PRIVILEGED */
1991-10-08 06:04:20 +08:00
/* Give the process appropriate permissions for access to
user data (i.e., to stat files, or to spawn a child process). */
void
user_access (void)
1991-10-08 06:04:20 +08:00
{
1993-01-12 03:45:54 +08:00
#ifdef GETLOADAVG_PRIVILEGED
1991-10-08 06:04:20 +08:00
if (!access_inited)
init_access ();
if (current_access == user)
return;
/* We are in "make access" mode. This means that the effective user and
group IDs are those of make (if it was installed setuid or setgid).
We now want to set the effective user and group IDs to the real IDs,
which are the IDs of the process that exec'd make. */
#ifdef HAVE_SETEUID
/* Modern systems have the seteuid/setegid calls which set only the
effective IDs, which is ideal. */
if (seteuid (user_uid) < 0)
pfatal_with_name ("user_access: seteuid");
#else /* Not HAVE_SETEUID. */
1993-01-06 07:02:42 +08:00
#ifndef HAVE_SETREUID
1991-10-08 06:04:20 +08:00
/* System V has only the setuid/setgid calls to set user/group IDs.
There is an effective ID, which can be set by setuid/setgid.
It can be set (unless you are root) only to either what it already is
(returned by geteuid/getegid, now in make_uid/make_gid),
the real ID (return by getuid/getgid, now in user_uid/user_gid),
or the saved set ID (what the effective ID was before this set-ID
executable (make) was exec'd). */
1993-01-06 07:02:42 +08:00
1991-10-08 06:04:20 +08:00
if (setuid (user_uid) < 0)
1993-01-06 07:02:42 +08:00
pfatal_with_name ("user_access: setuid");
#else /* HAVE_SETREUID. */
1993-01-06 07:02:42 +08:00
1991-10-08 06:04:20 +08:00
/* In 4BSD, the setreuid/setregid calls set both the real and effective IDs.
They may be set to themselves or each other. So you have two alternatives
at any one time. If you use setuid/setgid, the effective will be set to
the real, leaving only one alternative. Using setreuid/setregid, however,
you can toggle between your two alternatives by swapping the values in a
single setreuid or setregid call. */
1993-01-06 07:02:42 +08:00
1991-10-08 06:04:20 +08:00
if (setreuid (make_uid, user_uid) < 0)
1993-01-06 07:02:42 +08:00
pfatal_with_name ("user_access: setreuid");
#endif /* Not HAVE_SETREUID. */
#endif /* HAVE_SETEUID. */
1993-01-06 07:02:42 +08:00
#ifdef HAVE_SETEGID
if (setegid (user_gid) < 0)
pfatal_with_name ("user_access: setegid");
#else
1993-01-06 07:02:42 +08:00
#ifndef HAVE_SETREGID
if (setgid (user_gid) < 0)
pfatal_with_name ("user_access: setgid");
#else
1991-10-08 06:04:20 +08:00
if (setregid (make_gid, user_gid) < 0)
1993-01-06 07:02:42 +08:00
pfatal_with_name ("user_access: setregid");
#endif
1991-10-08 06:04:20 +08:00
#endif
current_access = user;
1993-01-12 03:45:54 +08:00
log_access (_("User access"));
1993-04-15 04:43:53 +08:00
1993-01-12 03:45:54 +08:00
#endif /* GETLOADAVG_PRIVILEGED */
1991-10-08 06:04:20 +08:00
}
/* Give the process appropriate permissions for access to
make data (i.e., the load average). */
void
make_access (void)
1991-10-08 06:04:20 +08:00
{
1993-01-12 03:45:54 +08:00
#ifdef GETLOADAVG_PRIVILEGED
1991-10-08 06:04:20 +08:00
if (!access_inited)
init_access ();
if (current_access == make)
return;
/* See comments in user_access, above. */
#ifdef HAVE_SETEUID
if (seteuid (make_uid) < 0)
pfatal_with_name ("make_access: seteuid");
#else
1993-01-06 07:02:42 +08:00
#ifndef HAVE_SETREUID
1991-10-08 06:04:20 +08:00
if (setuid (make_uid) < 0)
1993-01-06 07:02:42 +08:00
pfatal_with_name ("make_access: setuid");
1991-10-08 06:04:20 +08:00
#else
if (setreuid (user_uid, make_uid) < 0)
1993-01-06 07:02:42 +08:00
pfatal_with_name ("make_access: setreuid");
#endif
#endif
1993-01-06 07:02:42 +08:00
#ifdef HAVE_SETEGID
if (setegid (make_gid) < 0)
pfatal_with_name ("make_access: setegid");
#else
1993-01-06 07:02:42 +08:00
#ifndef HAVE_SETREGID
if (setgid (make_gid) < 0)
pfatal_with_name ("make_access: setgid");
#else
1991-10-08 06:04:20 +08:00
if (setregid (user_gid, make_gid) < 0)
1993-01-06 07:02:42 +08:00
pfatal_with_name ("make_access: setregid");
#endif
1991-10-08 06:04:20 +08:00
#endif
current_access = make;
1993-01-12 03:45:54 +08:00
log_access (_("Make access"));
1993-04-15 04:43:53 +08:00
1993-01-12 03:45:54 +08:00
#endif /* GETLOADAVG_PRIVILEGED */
1991-10-08 06:04:20 +08:00
}
/* Give the process appropriate permissions for a child process.
This is like user_access, but you can't get back to make_access. */
void
child_access (void)
1991-10-08 06:04:20 +08:00
{
1993-04-16 06:42:20 +08:00
#ifdef GETLOADAVG_PRIVILEGED
1993-04-15 04:43:53 +08:00
if (!access_inited)
abort ();
1991-10-08 06:04:20 +08:00
/* Set both the real and effective UID and GID to the user's.
They cannot be changed back to make's. */
1993-01-09 04:32:36 +08:00
#ifndef HAVE_SETREUID
1991-10-08 06:04:20 +08:00
if (setuid (user_uid) < 0)
1993-01-06 07:02:42 +08:00
pfatal_with_name ("child_access: setuid");
1993-01-09 04:32:36 +08:00
#else
if (setreuid (user_uid, user_uid) < 0)
pfatal_with_name ("child_access: setreuid");
#endif
#ifndef HAVE_SETREGID
1991-10-08 06:04:20 +08:00
if (setgid (user_gid) < 0)
1993-01-06 07:02:42 +08:00
pfatal_with_name ("child_access: setgid");
1993-01-09 04:32:36 +08:00
#else
if (setregid (user_gid, user_gid) < 0)
pfatal_with_name ("child_access: setregid");
#endif
1993-01-12 03:45:54 +08:00
log_access (_("Child access"));
1993-04-15 04:43:53 +08:00
1993-01-12 03:45:54 +08:00
#endif /* GETLOADAVG_PRIVILEGED */
1991-10-08 06:04:20 +08:00
}
1992-10-16 07:01:34 +08:00
#ifdef NEED_GET_PATH_MAX
unsigned int
get_path_max (void)
1992-10-16 07:01:34 +08:00
{
static unsigned int value;
if (value == 0)
{
long int x = pathconf ("/", _PC_PATH_MAX);
if (x > 0)
value = x;
else
return MAXPATHLEN;
}
return value;
}
#endif
/* This code is stolen from gnulib.
If/when we abandon the requirement to work with K&R compilers, we can
remove this (and perhaps other parts of GNU make!) and migrate to using
gnulib directly.
This is called only through atexit(), which means die() has already been
invoked. So, call exit() here directly. Apparently that works...?
*/
/* Close standard output, exiting with status 'exit_failure' on failure.
If a program writes *anything* to stdout, that program should close
stdout and make sure that it succeeds before exiting. Otherwise,
suppose that you go to the extreme of checking the return status
of every function that does an explicit write to stdout. The last
printf can succeed in writing to the internal stream buffer, and yet
the fclose(stdout) could still fail (due e.g., to a disk full error)
when it tries to write out that buffered data. Thus, you would be
left with an incomplete output file and the offending program would
exit successfully. Even calling fflush is not always sufficient,
since some file systems (NFS and CODA) buffer written/flushed data
until an actual close call.
Besides, it's wasteful to check the return value from every call
that writes to stdout -- just let the internal stream state record
the failure. That's what the ferror test is checking below.
It's important to detect such failures and exit nonzero because many
tools (most notably `make' and other build-management systems) depend
on being able to detect failure in other tools via their exit status. */
void
close_stdout (void)
{
int prev_fail = ferror (stdout);
int fclose_fail = fclose (stdout);
if (prev_fail || fclose_fail)
{
if (fclose_fail)
error (NILF, _("write error: %s"), strerror (errno));
else
error (NILF, _("write error"));
exit (EXIT_FAILURE);
}
}