leveldb/db/db_impl.cc
Hans Wennborg 36a5f8ed7f A number of fixes:
- Replace raw slice comparison with a call to user comparator.
  Added test for custom comparators.

- Fix end of namespace comments.

- Fixed bug in picking inputs for a level-0 compaction.

  When finding overlapping files, the covered range may expand
  as files are added to the input set.  We now correctly expand
  the range when this happens instead of continuing to use the
  old range.  For example, suppose L0 contains files with the
  following ranges:

      F1: a .. d
      F2:    c .. g
      F3:       f .. j

  and the initial compaction target is F3.  We used to search
  for range f..j which yielded {F2,F3}.  However we now expand
  the range as soon as another file is added.  In this case,
  when F2 is added, we expand the range to c..j and restart the
  search.  That picks up file F1 as well.

  This change fixes a bug related to deleted keys showing up
  incorrectly after a compaction as described in Issue 44.

(Sync with upstream @25072954)
2011-10-31 17:22:06 +00:00

1382 lines
41 KiB
C++

// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "db/db_impl.h"
#include <algorithm>
#include <set>
#include <string>
#include <stdint.h>
#include <stdio.h>
#include <vector>
#include "db/builder.h"
#include "db/db_iter.h"
#include "db/dbformat.h"
#include "db/filename.h"
#include "db/log_reader.h"
#include "db/log_writer.h"
#include "db/memtable.h"
#include "db/table_cache.h"
#include "db/version_set.h"
#include "db/write_batch_internal.h"
#include "leveldb/db.h"
#include "leveldb/env.h"
#include "leveldb/status.h"
#include "leveldb/table.h"
#include "leveldb/table_builder.h"
#include "port/port.h"
#include "table/block.h"
#include "table/merger.h"
#include "table/two_level_iterator.h"
#include "util/coding.h"
#include "util/logging.h"
#include "util/mutexlock.h"
namespace leveldb {
struct DBImpl::CompactionState {
Compaction* const compaction;
// Sequence numbers < smallest_snapshot are not significant since we
// will never have to service a snapshot below smallest_snapshot.
// Therefore if we have seen a sequence number S <= smallest_snapshot,
// we can drop all entries for the same key with sequence numbers < S.
SequenceNumber smallest_snapshot;
// Files produced by compaction
struct Output {
uint64_t number;
uint64_t file_size;
InternalKey smallest, largest;
};
std::vector<Output> outputs;
// State kept for output being generated
WritableFile* outfile;
TableBuilder* builder;
uint64_t total_bytes;
Output* current_output() { return &outputs[outputs.size()-1]; }
explicit CompactionState(Compaction* c)
: compaction(c),
outfile(NULL),
builder(NULL),
total_bytes(0) {
}
};
// Fix user-supplied options to be reasonable
template <class T,class V>
static void ClipToRange(T* ptr, V minvalue, V maxvalue) {
if (static_cast<V>(*ptr) > maxvalue) *ptr = maxvalue;
if (static_cast<V>(*ptr) < minvalue) *ptr = minvalue;
}
Options SanitizeOptions(const std::string& dbname,
const InternalKeyComparator* icmp,
const Options& src) {
Options result = src;
result.comparator = icmp;
ClipToRange(&result.max_open_files, 20, 50000);
ClipToRange(&result.write_buffer_size, 64<<10, 1<<30);
ClipToRange(&result.block_size, 1<<10, 4<<20);
if (result.info_log == NULL) {
// Open a log file in the same directory as the db
src.env->CreateDir(dbname); // In case it does not exist
src.env->RenameFile(InfoLogFileName(dbname), OldInfoLogFileName(dbname));
Status s = src.env->NewLogger(InfoLogFileName(dbname), &result.info_log);
if (!s.ok()) {
// No place suitable for logging
result.info_log = NULL;
}
}
if (result.block_cache == NULL) {
result.block_cache = NewLRUCache(8 << 20);
}
return result;
}
DBImpl::DBImpl(const Options& options, const std::string& dbname)
: env_(options.env),
internal_comparator_(options.comparator),
options_(SanitizeOptions(dbname, &internal_comparator_, options)),
owns_info_log_(options_.info_log != options.info_log),
owns_cache_(options_.block_cache != options.block_cache),
dbname_(dbname),
db_lock_(NULL),
shutting_down_(NULL),
bg_cv_(&mutex_),
mem_(new MemTable(internal_comparator_)),
imm_(NULL),
logfile_(NULL),
logfile_number_(0),
log_(NULL),
logger_(NULL),
logger_cv_(&mutex_),
bg_compaction_scheduled_(false),
manual_compaction_(NULL) {
mem_->Ref();
has_imm_.Release_Store(NULL);
// Reserve ten files or so for other uses and give the rest to TableCache.
const int table_cache_size = options.max_open_files - 10;
table_cache_ = new TableCache(dbname_, &options_, table_cache_size);
versions_ = new VersionSet(dbname_, &options_, table_cache_,
&internal_comparator_);
}
DBImpl::~DBImpl() {
// Wait for background work to finish
mutex_.Lock();
shutting_down_.Release_Store(this); // Any non-NULL value is ok
while (bg_compaction_scheduled_) {
bg_cv_.Wait();
}
mutex_.Unlock();
if (db_lock_ != NULL) {
env_->UnlockFile(db_lock_);
}
delete versions_;
if (mem_ != NULL) mem_->Unref();
if (imm_ != NULL) imm_->Unref();
delete log_;
delete logfile_;
delete table_cache_;
if (owns_info_log_) {
delete options_.info_log;
}
if (owns_cache_) {
delete options_.block_cache;
}
}
Status DBImpl::NewDB() {
VersionEdit new_db;
new_db.SetComparatorName(user_comparator()->Name());
new_db.SetLogNumber(0);
new_db.SetNextFile(2);
new_db.SetLastSequence(0);
const std::string manifest = DescriptorFileName(dbname_, 1);
WritableFile* file;
Status s = env_->NewWritableFile(manifest, &file);
if (!s.ok()) {
return s;
}
{
log::Writer log(file);
std::string record;
new_db.EncodeTo(&record);
s = log.AddRecord(record);
if (s.ok()) {
s = file->Close();
}
}
delete file;
if (s.ok()) {
// Make "CURRENT" file that points to the new manifest file.
s = SetCurrentFile(env_, dbname_, 1);
} else {
env_->DeleteFile(manifest);
}
return s;
}
void DBImpl::MaybeIgnoreError(Status* s) const {
if (s->ok() || options_.paranoid_checks) {
// No change needed
} else {
Log(options_.info_log, "Ignoring error %s", s->ToString().c_str());
*s = Status::OK();
}
}
void DBImpl::DeleteObsoleteFiles() {
// Make a set of all of the live files
std::set<uint64_t> live = pending_outputs_;
versions_->AddLiveFiles(&live);
std::vector<std::string> filenames;
env_->GetChildren(dbname_, &filenames); // Ignoring errors on purpose
uint64_t number;
FileType type;
for (size_t i = 0; i < filenames.size(); i++) {
if (ParseFileName(filenames[i], &number, &type)) {
bool keep = true;
switch (type) {
case kLogFile:
keep = ((number >= versions_->LogNumber()) ||
(number == versions_->PrevLogNumber()));
break;
case kDescriptorFile:
// Keep my manifest file, and any newer incarnations'
// (in case there is a race that allows other incarnations)
keep = (number >= versions_->ManifestFileNumber());
break;
case kTableFile:
keep = (live.find(number) != live.end());
break;
case kTempFile:
// Any temp files that are currently being written to must
// be recorded in pending_outputs_, which is inserted into "live"
keep = (live.find(number) != live.end());
break;
case kCurrentFile:
case kDBLockFile:
case kInfoLogFile:
keep = true;
break;
}
if (!keep) {
if (type == kTableFile) {
table_cache_->Evict(number);
}
Log(options_.info_log, "Delete type=%d #%lld\n",
int(type),
static_cast<unsigned long long>(number));
env_->DeleteFile(dbname_ + "/" + filenames[i]);
}
}
}
}
Status DBImpl::Recover(VersionEdit* edit) {
mutex_.AssertHeld();
// Ignore error from CreateDir since the creation of the DB is
// committed only when the descriptor is created, and this directory
// may already exist from a previous failed creation attempt.
env_->CreateDir(dbname_);
assert(db_lock_ == NULL);
Status s = env_->LockFile(LockFileName(dbname_), &db_lock_);
if (!s.ok()) {
return s;
}
if (!env_->FileExists(CurrentFileName(dbname_))) {
if (options_.create_if_missing) {
s = NewDB();
if (!s.ok()) {
return s;
}
} else {
return Status::InvalidArgument(
dbname_, "does not exist (create_if_missing is false)");
}
} else {
if (options_.error_if_exists) {
return Status::InvalidArgument(
dbname_, "exists (error_if_exists is true)");
}
}
s = versions_->Recover();
if (s.ok()) {
SequenceNumber max_sequence(0);
// Recover from all newer log files than the ones named in the
// descriptor (new log files may have been added by the previous
// incarnation without registering them in the descriptor).
//
// Note that PrevLogNumber() is no longer used, but we pay
// attention to it in case we are recovering a database
// produced by an older version of leveldb.
const uint64_t min_log = versions_->LogNumber();
const uint64_t prev_log = versions_->PrevLogNumber();
std::vector<std::string> filenames;
s = env_->GetChildren(dbname_, &filenames);
if (!s.ok()) {
return s;
}
uint64_t number;
FileType type;
std::vector<uint64_t> logs;
for (size_t i = 0; i < filenames.size(); i++) {
if (ParseFileName(filenames[i], &number, &type)
&& type == kLogFile
&& ((number >= min_log) || (number == prev_log))) {
logs.push_back(number);
}
}
// Recover in the order in which the logs were generated
std::sort(logs.begin(), logs.end());
for (size_t i = 0; i < logs.size(); i++) {
s = RecoverLogFile(logs[i], edit, &max_sequence);
// The previous incarnation may not have written any MANIFEST
// records after allocating this log number. So we manually
// update the file number allocation counter in VersionSet.
versions_->MarkFileNumberUsed(logs[i]);
}
if (s.ok()) {
if (versions_->LastSequence() < max_sequence) {
versions_->SetLastSequence(max_sequence);
}
}
}
return s;
}
Status DBImpl::RecoverLogFile(uint64_t log_number,
VersionEdit* edit,
SequenceNumber* max_sequence) {
struct LogReporter : public log::Reader::Reporter {
Env* env;
Logger* info_log;
const char* fname;
Status* status; // NULL if options_.paranoid_checks==false
virtual void Corruption(size_t bytes, const Status& s) {
Log(info_log, "%s%s: dropping %d bytes; %s",
(this->status == NULL ? "(ignoring error) " : ""),
fname, static_cast<int>(bytes), s.ToString().c_str());
if (this->status != NULL && this->status->ok()) *this->status = s;
}
};
mutex_.AssertHeld();
// Open the log file
std::string fname = LogFileName(dbname_, log_number);
SequentialFile* file;
Status status = env_->NewSequentialFile(fname, &file);
if (!status.ok()) {
MaybeIgnoreError(&status);
return status;
}
// Create the log reader.
LogReporter reporter;
reporter.env = env_;
reporter.info_log = options_.info_log;
reporter.fname = fname.c_str();
reporter.status = (options_.paranoid_checks ? &status : NULL);
// We intentially make log::Reader do checksumming even if
// paranoid_checks==false so that corruptions cause entire commits
// to be skipped instead of propagating bad information (like overly
// large sequence numbers).
log::Reader reader(file, &reporter, true/*checksum*/,
0/*initial_offset*/);
Log(options_.info_log, "Recovering log #%llu",
(unsigned long long) log_number);
// Read all the records and add to a memtable
std::string scratch;
Slice record;
WriteBatch batch;
MemTable* mem = NULL;
while (reader.ReadRecord(&record, &scratch) &&
status.ok()) {
if (record.size() < 12) {
reporter.Corruption(
record.size(), Status::Corruption("log record too small"));
continue;
}
WriteBatchInternal::SetContents(&batch, record);
if (mem == NULL) {
mem = new MemTable(internal_comparator_);
mem->Ref();
}
status = WriteBatchInternal::InsertInto(&batch, mem);
MaybeIgnoreError(&status);
if (!status.ok()) {
break;
}
const SequenceNumber last_seq =
WriteBatchInternal::Sequence(&batch) +
WriteBatchInternal::Count(&batch) - 1;
if (last_seq > *max_sequence) {
*max_sequence = last_seq;
}
if (mem->ApproximateMemoryUsage() > options_.write_buffer_size) {
status = WriteLevel0Table(mem, edit, NULL);
if (!status.ok()) {
// Reflect errors immediately so that conditions like full
// file-systems cause the DB::Open() to fail.
break;
}
mem->Unref();
mem = NULL;
}
}
if (status.ok() && mem != NULL) {
status = WriteLevel0Table(mem, edit, NULL);
// Reflect errors immediately so that conditions like full
// file-systems cause the DB::Open() to fail.
}
if (mem != NULL) mem->Unref();
delete file;
return status;
}
Status DBImpl::WriteLevel0Table(MemTable* mem, VersionEdit* edit,
Version* base) {
mutex_.AssertHeld();
const uint64_t start_micros = env_->NowMicros();
FileMetaData meta;
meta.number = versions_->NewFileNumber();
pending_outputs_.insert(meta.number);
Iterator* iter = mem->NewIterator();
Log(options_.info_log, "Level-0 table #%llu: started",
(unsigned long long) meta.number);
Status s;
{
mutex_.Unlock();
s = BuildTable(dbname_, env_, options_, table_cache_, iter, &meta);
mutex_.Lock();
}
Log(options_.info_log, "Level-0 table #%llu: %lld bytes %s",
(unsigned long long) meta.number,
(unsigned long long) meta.file_size,
s.ToString().c_str());
delete iter;
pending_outputs_.erase(meta.number);
// Note that if file_size is zero, the file has been deleted and
// should not be added to the manifest.
int level = 0;
if (s.ok() && meta.file_size > 0) {
const Slice min_user_key = meta.smallest.user_key();
const Slice max_user_key = meta.largest.user_key();
if (base != NULL) {
level = base->PickLevelForMemTableOutput(min_user_key, max_user_key);
}
edit->AddFile(level, meta.number, meta.file_size,
meta.smallest, meta.largest);
}
CompactionStats stats;
stats.micros = env_->NowMicros() - start_micros;
stats.bytes_written = meta.file_size;
stats_[level].Add(stats);
return s;
}
Status DBImpl::CompactMemTable() {
mutex_.AssertHeld();
assert(imm_ != NULL);
// Save the contents of the memtable as a new Table
VersionEdit edit;
Version* base = versions_->current();
base->Ref();
Status s = WriteLevel0Table(imm_, &edit, base);
base->Unref();
if (s.ok() && shutting_down_.Acquire_Load()) {
s = Status::IOError("Deleting DB during memtable compaction");
}
// Replace immutable memtable with the generated Table
if (s.ok()) {
edit.SetPrevLogNumber(0);
edit.SetLogNumber(logfile_number_); // Earlier logs no longer needed
s = versions_->LogAndApply(&edit, &mutex_);
}
if (s.ok()) {
// Commit to the new state
imm_->Unref();
imm_ = NULL;
has_imm_.Release_Store(NULL);
DeleteObsoleteFiles();
}
return s;
}
void DBImpl::CompactRange(const Slice* begin, const Slice* end) {
int max_level_with_files = 1;
{
MutexLock l(&mutex_);
Version* base = versions_->current();
for (int level = 1; level < config::kNumLevels; level++) {
if (base->OverlapInLevel(level, begin, end)) {
max_level_with_files = level;
}
}
}
TEST_CompactMemTable(); // TODO(sanjay): Skip if memtable does not overlap
for (int level = 0; level < max_level_with_files; level++) {
TEST_CompactRange(level, begin, end);
}
}
void DBImpl::TEST_CompactRange(int level, const Slice* begin,const Slice* end) {
assert(level >= 0);
assert(level + 1 < config::kNumLevels);
InternalKey begin_storage, end_storage;
ManualCompaction manual;
manual.level = level;
manual.done = false;
if (begin == NULL) {
manual.begin = NULL;
} else {
begin_storage = InternalKey(*begin, kMaxSequenceNumber, kValueTypeForSeek);
manual.begin = &begin_storage;
}
if (end == NULL) {
manual.end = NULL;
} else {
end_storage = InternalKey(*end, 0, static_cast<ValueType>(0));
manual.end = &end_storage;
}
MutexLock l(&mutex_);
while (!manual.done) {
while (manual_compaction_ != NULL) {
bg_cv_.Wait();
}
manual_compaction_ = &manual;
MaybeScheduleCompaction();
while (manual_compaction_ == &manual) {
bg_cv_.Wait();
}
}
}
Status DBImpl::TEST_CompactMemTable() {
MutexLock l(&mutex_);
LoggerId self;
AcquireLoggingResponsibility(&self);
Status s = MakeRoomForWrite(true /* force compaction */);
ReleaseLoggingResponsibility(&self);
if (s.ok()) {
// Wait until the compaction completes
while (imm_ != NULL && bg_error_.ok()) {
bg_cv_.Wait();
}
if (imm_ != NULL) {
s = bg_error_;
}
}
return s;
}
void DBImpl::MaybeScheduleCompaction() {
mutex_.AssertHeld();
if (bg_compaction_scheduled_) {
// Already scheduled
} else if (shutting_down_.Acquire_Load()) {
// DB is being deleted; no more background compactions
} else if (imm_ == NULL &&
manual_compaction_ == NULL &&
!versions_->NeedsCompaction()) {
// No work to be done
} else {
bg_compaction_scheduled_ = true;
env_->Schedule(&DBImpl::BGWork, this);
}
}
void DBImpl::BGWork(void* db) {
reinterpret_cast<DBImpl*>(db)->BackgroundCall();
}
void DBImpl::BackgroundCall() {
MutexLock l(&mutex_);
assert(bg_compaction_scheduled_);
if (!shutting_down_.Acquire_Load()) {
BackgroundCompaction();
}
bg_compaction_scheduled_ = false;
// Previous compaction may have produced too many files in a level,
// so reschedule another compaction if needed.
MaybeScheduleCompaction();
bg_cv_.SignalAll();
}
void DBImpl::BackgroundCompaction() {
mutex_.AssertHeld();
if (imm_ != NULL) {
CompactMemTable();
return;
}
Compaction* c;
bool is_manual = (manual_compaction_ != NULL);
InternalKey manual_end;
if (is_manual) {
ManualCompaction* m = manual_compaction_;
c = versions_->CompactRange(m->level, m->begin, m->end);
m->done = (c == NULL);
if (c != NULL) {
manual_end = c->input(0, c->num_input_files(0) - 1)->largest;
}
Log(options_.info_log,
"Manual compaction at level-%d from %s .. %s; will stop at %s\n",
m->level,
(m->begin ? m->begin->DebugString().c_str() : "(begin)"),
(m->end ? m->end->DebugString().c_str() : "(end)"),
(m->done ? "(end)" : manual_end.DebugString().c_str()));
} else {
c = versions_->PickCompaction();
}
Status status;
if (c == NULL) {
// Nothing to do
} else if (!is_manual && c->IsTrivialMove()) {
// Move file to next level
assert(c->num_input_files(0) == 1);
FileMetaData* f = c->input(0, 0);
c->edit()->DeleteFile(c->level(), f->number);
c->edit()->AddFile(c->level() + 1, f->number, f->file_size,
f->smallest, f->largest);
status = versions_->LogAndApply(c->edit(), &mutex_);
VersionSet::LevelSummaryStorage tmp;
Log(options_.info_log, "Moved #%lld to level-%d %lld bytes %s: %s\n",
static_cast<unsigned long long>(f->number),
c->level() + 1,
static_cast<unsigned long long>(f->file_size),
status.ToString().c_str(),
versions_->LevelSummary(&tmp));
} else {
CompactionState* compact = new CompactionState(c);
status = DoCompactionWork(compact);
CleanupCompaction(compact);
}
delete c;
if (status.ok()) {
// Done
} else if (shutting_down_.Acquire_Load()) {
// Ignore compaction errors found during shutting down
} else {
Log(options_.info_log,
"Compaction error: %s", status.ToString().c_str());
if (options_.paranoid_checks && bg_error_.ok()) {
bg_error_ = status;
}
}
if (is_manual) {
ManualCompaction* m = manual_compaction_;
if (!m->done) {
// We only compacted part of the requested range. Update *m
// to the range that is left to be compacted.
m->tmp_storage = manual_end;
m->begin = &m->tmp_storage;
}
manual_compaction_ = NULL;
}
}
void DBImpl::CleanupCompaction(CompactionState* compact) {
mutex_.AssertHeld();
if (compact->builder != NULL) {
// May happen if we get a shutdown call in the middle of compaction
compact->builder->Abandon();
delete compact->builder;
} else {
assert(compact->outfile == NULL);
}
delete compact->outfile;
for (size_t i = 0; i < compact->outputs.size(); i++) {
const CompactionState::Output& out = compact->outputs[i];
pending_outputs_.erase(out.number);
}
delete compact;
}
Status DBImpl::OpenCompactionOutputFile(CompactionState* compact) {
assert(compact != NULL);
assert(compact->builder == NULL);
uint64_t file_number;
{
mutex_.Lock();
file_number = versions_->NewFileNumber();
pending_outputs_.insert(file_number);
CompactionState::Output out;
out.number = file_number;
out.smallest.Clear();
out.largest.Clear();
compact->outputs.push_back(out);
mutex_.Unlock();
}
// Make the output file
std::string fname = TableFileName(dbname_, file_number);
Status s = env_->NewWritableFile(fname, &compact->outfile);
if (s.ok()) {
compact->builder = new TableBuilder(options_, compact->outfile);
}
return s;
}
Status DBImpl::FinishCompactionOutputFile(CompactionState* compact,
Iterator* input) {
assert(compact != NULL);
assert(compact->outfile != NULL);
assert(compact->builder != NULL);
const uint64_t output_number = compact->current_output()->number;
assert(output_number != 0);
// Check for iterator errors
Status s = input->status();
const uint64_t current_entries = compact->builder->NumEntries();
if (s.ok()) {
s = compact->builder->Finish();
} else {
compact->builder->Abandon();
}
const uint64_t current_bytes = compact->builder->FileSize();
compact->current_output()->file_size = current_bytes;
compact->total_bytes += current_bytes;
delete compact->builder;
compact->builder = NULL;
// Finish and check for file errors
if (s.ok()) {
s = compact->outfile->Sync();
}
if (s.ok()) {
s = compact->outfile->Close();
}
delete compact->outfile;
compact->outfile = NULL;
if (s.ok() && current_entries > 0) {
// Verify that the table is usable
Iterator* iter = table_cache_->NewIterator(ReadOptions(),
output_number,
current_bytes);
s = iter->status();
delete iter;
if (s.ok()) {
Log(options_.info_log,
"Generated table #%llu: %lld keys, %lld bytes",
(unsigned long long) output_number,
(unsigned long long) current_entries,
(unsigned long long) current_bytes);
}
}
return s;
}
Status DBImpl::InstallCompactionResults(CompactionState* compact) {
mutex_.AssertHeld();
Log(options_.info_log, "Compacted %d@%d + %d@%d files => %lld bytes",
compact->compaction->num_input_files(0),
compact->compaction->level(),
compact->compaction->num_input_files(1),
compact->compaction->level() + 1,
static_cast<long long>(compact->total_bytes));
// Add compaction outputs
compact->compaction->AddInputDeletions(compact->compaction->edit());
const int level = compact->compaction->level();
for (size_t i = 0; i < compact->outputs.size(); i++) {
const CompactionState::Output& out = compact->outputs[i];
compact->compaction->edit()->AddFile(
level + 1,
out.number, out.file_size, out.smallest, out.largest);
pending_outputs_.erase(out.number);
}
compact->outputs.clear();
Status s = versions_->LogAndApply(compact->compaction->edit(), &mutex_);
if (s.ok()) {
compact->compaction->ReleaseInputs();
DeleteObsoleteFiles();
} else {
// Discard any files we may have created during this failed compaction
for (size_t i = 0; i < compact->outputs.size(); i++) {
env_->DeleteFile(TableFileName(dbname_, compact->outputs[i].number));
}
}
return s;
}
Status DBImpl::DoCompactionWork(CompactionState* compact) {
const uint64_t start_micros = env_->NowMicros();
int64_t imm_micros = 0; // Micros spent doing imm_ compactions
Log(options_.info_log, "Compacting %d@%d + %d@%d files",
compact->compaction->num_input_files(0),
compact->compaction->level(),
compact->compaction->num_input_files(1),
compact->compaction->level() + 1);
assert(versions_->NumLevelFiles(compact->compaction->level()) > 0);
assert(compact->builder == NULL);
assert(compact->outfile == NULL);
if (snapshots_.empty()) {
compact->smallest_snapshot = versions_->LastSequence();
} else {
compact->smallest_snapshot = snapshots_.oldest()->number_;
}
// Release mutex while we're actually doing the compaction work
mutex_.Unlock();
Iterator* input = versions_->MakeInputIterator(compact->compaction);
input->SeekToFirst();
Status status;
ParsedInternalKey ikey;
std::string current_user_key;
bool has_current_user_key = false;
SequenceNumber last_sequence_for_key = kMaxSequenceNumber;
for (; input->Valid() && !shutting_down_.Acquire_Load(); ) {
// Prioritize immutable compaction work
if (has_imm_.NoBarrier_Load() != NULL) {
const uint64_t imm_start = env_->NowMicros();
mutex_.Lock();
if (imm_ != NULL) {
CompactMemTable();
bg_cv_.SignalAll(); // Wakeup MakeRoomForWrite() if necessary
}
mutex_.Unlock();
imm_micros += (env_->NowMicros() - imm_start);
}
Slice key = input->key();
if (compact->compaction->ShouldStopBefore(key) &&
compact->builder != NULL) {
status = FinishCompactionOutputFile(compact, input);
if (!status.ok()) {
break;
}
}
// Handle key/value, add to state, etc.
bool drop = false;
if (!ParseInternalKey(key, &ikey)) {
// Do not hide error keys
current_user_key.clear();
has_current_user_key = false;
last_sequence_for_key = kMaxSequenceNumber;
} else {
if (!has_current_user_key ||
user_comparator()->Compare(ikey.user_key,
Slice(current_user_key)) != 0) {
// First occurrence of this user key
current_user_key.assign(ikey.user_key.data(), ikey.user_key.size());
has_current_user_key = true;
last_sequence_for_key = kMaxSequenceNumber;
}
if (last_sequence_for_key <= compact->smallest_snapshot) {
// Hidden by an newer entry for same user key
drop = true; // (A)
} else if (ikey.type == kTypeDeletion &&
ikey.sequence <= compact->smallest_snapshot &&
compact->compaction->IsBaseLevelForKey(ikey.user_key)) {
// For this user key:
// (1) there is no data in higher levels
// (2) data in lower levels will have larger sequence numbers
// (3) data in layers that are being compacted here and have
// smaller sequence numbers will be dropped in the next
// few iterations of this loop (by rule (A) above).
// Therefore this deletion marker is obsolete and can be dropped.
drop = true;
}
last_sequence_for_key = ikey.sequence;
}
#if 0
Log(options_.info_log,
" Compact: %s, seq %d, type: %d %d, drop: %d, is_base: %d, "
"%d smallest_snapshot: %d",
ikey.user_key.ToString().c_str(),
(int)ikey.sequence, ikey.type, kTypeValue, drop,
compact->compaction->IsBaseLevelForKey(ikey.user_key),
(int)last_sequence_for_key, (int)compact->smallest_snapshot);
#endif
if (!drop) {
// Open output file if necessary
if (compact->builder == NULL) {
status = OpenCompactionOutputFile(compact);
if (!status.ok()) {
break;
}
}
if (compact->builder->NumEntries() == 0) {
compact->current_output()->smallest.DecodeFrom(key);
}
compact->current_output()->largest.DecodeFrom(key);
compact->builder->Add(key, input->value());
// Close output file if it is big enough
if (compact->builder->FileSize() >=
compact->compaction->MaxOutputFileSize()) {
status = FinishCompactionOutputFile(compact, input);
if (!status.ok()) {
break;
}
}
}
input->Next();
}
if (status.ok() && shutting_down_.Acquire_Load()) {
status = Status::IOError("Deleting DB during compaction");
}
if (status.ok() && compact->builder != NULL) {
status = FinishCompactionOutputFile(compact, input);
}
if (status.ok()) {
status = input->status();
}
delete input;
input = NULL;
CompactionStats stats;
stats.micros = env_->NowMicros() - start_micros - imm_micros;
for (int which = 0; which < 2; which++) {
for (int i = 0; i < compact->compaction->num_input_files(which); i++) {
stats.bytes_read += compact->compaction->input(which, i)->file_size;
}
}
for (size_t i = 0; i < compact->outputs.size(); i++) {
stats.bytes_written += compact->outputs[i].file_size;
}
mutex_.Lock();
stats_[compact->compaction->level() + 1].Add(stats);
if (status.ok()) {
status = InstallCompactionResults(compact);
}
VersionSet::LevelSummaryStorage tmp;
Log(options_.info_log,
"compacted to: %s", versions_->LevelSummary(&tmp));
return status;
}
namespace {
struct IterState {
port::Mutex* mu;
Version* version;
MemTable* mem;
MemTable* imm;
};
static void CleanupIteratorState(void* arg1, void* arg2) {
IterState* state = reinterpret_cast<IterState*>(arg1);
state->mu->Lock();
state->mem->Unref();
if (state->imm != NULL) state->imm->Unref();
state->version->Unref();
state->mu->Unlock();
delete state;
}
} // namespace
Iterator* DBImpl::NewInternalIterator(const ReadOptions& options,
SequenceNumber* latest_snapshot) {
IterState* cleanup = new IterState;
mutex_.Lock();
*latest_snapshot = versions_->LastSequence();
// Collect together all needed child iterators
std::vector<Iterator*> list;
list.push_back(mem_->NewIterator());
mem_->Ref();
if (imm_ != NULL) {
list.push_back(imm_->NewIterator());
imm_->Ref();
}
versions_->current()->AddIterators(options, &list);
Iterator* internal_iter =
NewMergingIterator(&internal_comparator_, &list[0], list.size());
versions_->current()->Ref();
cleanup->mu = &mutex_;
cleanup->mem = mem_;
cleanup->imm = imm_;
cleanup->version = versions_->current();
internal_iter->RegisterCleanup(CleanupIteratorState, cleanup, NULL);
mutex_.Unlock();
return internal_iter;
}
Iterator* DBImpl::TEST_NewInternalIterator() {
SequenceNumber ignored;
return NewInternalIterator(ReadOptions(), &ignored);
}
int64_t DBImpl::TEST_MaxNextLevelOverlappingBytes() {
MutexLock l(&mutex_);
return versions_->MaxNextLevelOverlappingBytes();
}
Status DBImpl::Get(const ReadOptions& options,
const Slice& key,
std::string* value) {
Status s;
MutexLock l(&mutex_);
SequenceNumber snapshot;
if (options.snapshot != NULL) {
snapshot = reinterpret_cast<const SnapshotImpl*>(options.snapshot)->number_;
} else {
snapshot = versions_->LastSequence();
}
MemTable* mem = mem_;
MemTable* imm = imm_;
Version* current = versions_->current();
mem->Ref();
if (imm != NULL) imm->Ref();
current->Ref();
bool have_stat_update = false;
Version::GetStats stats;
// Unlock while reading from files and memtables
{
mutex_.Unlock();
// First look in the memtable, then in the immutable memtable (if any).
LookupKey lkey(key, snapshot);
if (mem->Get(lkey, value, &s)) {
// Done
} else if (imm != NULL && imm->Get(lkey, value, &s)) {
// Done
} else {
s = current->Get(options, lkey, value, &stats);
have_stat_update = true;
}
mutex_.Lock();
}
if (have_stat_update && current->UpdateStats(stats)) {
MaybeScheduleCompaction();
}
mem->Unref();
if (imm != NULL) imm->Unref();
current->Unref();
return s;
}
Iterator* DBImpl::NewIterator(const ReadOptions& options) {
SequenceNumber latest_snapshot;
Iterator* internal_iter = NewInternalIterator(options, &latest_snapshot);
return NewDBIterator(
&dbname_, env_, user_comparator(), internal_iter,
(options.snapshot != NULL
? reinterpret_cast<const SnapshotImpl*>(options.snapshot)->number_
: latest_snapshot));
}
const Snapshot* DBImpl::GetSnapshot() {
MutexLock l(&mutex_);
return snapshots_.New(versions_->LastSequence());
}
void DBImpl::ReleaseSnapshot(const Snapshot* s) {
MutexLock l(&mutex_);
snapshots_.Delete(reinterpret_cast<const SnapshotImpl*>(s));
}
// Convenience methods
Status DBImpl::Put(const WriteOptions& o, const Slice& key, const Slice& val) {
return DB::Put(o, key, val);
}
Status DBImpl::Delete(const WriteOptions& options, const Slice& key) {
return DB::Delete(options, key);
}
// There is at most one thread that is the current logger. This call
// waits until preceding logger(s) have finished and becomes the
// current logger.
void DBImpl::AcquireLoggingResponsibility(LoggerId* self) {
while (logger_ != NULL) {
logger_cv_.Wait();
}
logger_ = self;
}
void DBImpl::ReleaseLoggingResponsibility(LoggerId* self) {
assert(logger_ == self);
logger_ = NULL;
logger_cv_.SignalAll();
}
Status DBImpl::Write(const WriteOptions& options, WriteBatch* updates) {
Status status;
MutexLock l(&mutex_);
LoggerId self;
AcquireLoggingResponsibility(&self);
status = MakeRoomForWrite(false); // May temporarily release lock and wait
uint64_t last_sequence = versions_->LastSequence();
if (status.ok()) {
WriteBatchInternal::SetSequence(updates, last_sequence + 1);
last_sequence += WriteBatchInternal::Count(updates);
// Add to log and apply to memtable. We can release the lock during
// this phase since the "logger_" flag protects against concurrent
// loggers and concurrent writes into mem_.
{
assert(logger_ == &self);
mutex_.Unlock();
status = log_->AddRecord(WriteBatchInternal::Contents(updates));
if (status.ok() && options.sync) {
status = logfile_->Sync();
}
if (status.ok()) {
status = WriteBatchInternal::InsertInto(updates, mem_);
}
mutex_.Lock();
assert(logger_ == &self);
}
versions_->SetLastSequence(last_sequence);
}
ReleaseLoggingResponsibility(&self);
return status;
}
// REQUIRES: mutex_ is held
// REQUIRES: this thread is the current logger
Status DBImpl::MakeRoomForWrite(bool force) {
mutex_.AssertHeld();
assert(logger_ != NULL);
bool allow_delay = !force;
Status s;
while (true) {
if (!bg_error_.ok()) {
// Yield previous error
s = bg_error_;
break;
} else if (
allow_delay &&
versions_->NumLevelFiles(0) >= config::kL0_SlowdownWritesTrigger) {
// We are getting close to hitting a hard limit on the number of
// L0 files. Rather than delaying a single write by several
// seconds when we hit the hard limit, start delaying each
// individual write by 1ms to reduce latency variance. Also,
// this delay hands over some CPU to the compaction thread in
// case it is sharing the same core as the writer.
mutex_.Unlock();
env_->SleepForMicroseconds(1000);
allow_delay = false; // Do not delay a single write more than once
mutex_.Lock();
} else if (!force &&
(mem_->ApproximateMemoryUsage() <= options_.write_buffer_size)) {
// There is room in current memtable
break;
} else if (imm_ != NULL) {
// We have filled up the current memtable, but the previous
// one is still being compacted, so we wait.
bg_cv_.Wait();
} else if (versions_->NumLevelFiles(0) >= config::kL0_StopWritesTrigger) {
// There are too many level-0 files.
Log(options_.info_log, "waiting...\n");
bg_cv_.Wait();
} else {
// Attempt to switch to a new memtable and trigger compaction of old
assert(versions_->PrevLogNumber() == 0);
uint64_t new_log_number = versions_->NewFileNumber();
WritableFile* lfile = NULL;
s = env_->NewWritableFile(LogFileName(dbname_, new_log_number), &lfile);
if (!s.ok()) {
break;
}
delete log_;
delete logfile_;
logfile_ = lfile;
logfile_number_ = new_log_number;
log_ = new log::Writer(lfile);
imm_ = mem_;
has_imm_.Release_Store(imm_);
mem_ = new MemTable(internal_comparator_);
mem_->Ref();
force = false; // Do not force another compaction if have room
MaybeScheduleCompaction();
}
}
return s;
}
bool DBImpl::GetProperty(const Slice& property, std::string* value) {
value->clear();
MutexLock l(&mutex_);
Slice in = property;
Slice prefix("leveldb.");
if (!in.starts_with(prefix)) return false;
in.remove_prefix(prefix.size());
if (in.starts_with("num-files-at-level")) {
in.remove_prefix(strlen("num-files-at-level"));
uint64_t level;
bool ok = ConsumeDecimalNumber(&in, &level) && in.empty();
if (!ok || level >= config::kNumLevels) {
return false;
} else {
char buf[100];
snprintf(buf, sizeof(buf), "%d",
versions_->NumLevelFiles(static_cast<int>(level)));
*value = buf;
return true;
}
} else if (in == "stats") {
char buf[200];
snprintf(buf, sizeof(buf),
" Compactions\n"
"Level Files Size(MB) Time(sec) Read(MB) Write(MB)\n"
"--------------------------------------------------\n"
);
value->append(buf);
for (int level = 0; level < config::kNumLevels; level++) {
int files = versions_->NumLevelFiles(level);
if (stats_[level].micros > 0 || files > 0) {
snprintf(
buf, sizeof(buf),
"%3d %8d %8.0f %9.0f %8.0f %9.0f\n",
level,
files,
versions_->NumLevelBytes(level) / 1048576.0,
stats_[level].micros / 1e6,
stats_[level].bytes_read / 1048576.0,
stats_[level].bytes_written / 1048576.0);
value->append(buf);
}
}
return true;
} else if (in == "sstables") {
*value = versions_->current()->DebugString();
return true;
}
return false;
}
void DBImpl::GetApproximateSizes(
const Range* range, int n,
uint64_t* sizes) {
// TODO(opt): better implementation
Version* v;
{
MutexLock l(&mutex_);
versions_->current()->Ref();
v = versions_->current();
}
for (int i = 0; i < n; i++) {
// Convert user_key into a corresponding internal key.
InternalKey k1(range[i].start, kMaxSequenceNumber, kValueTypeForSeek);
InternalKey k2(range[i].limit, kMaxSequenceNumber, kValueTypeForSeek);
uint64_t start = versions_->ApproximateOffsetOf(v, k1);
uint64_t limit = versions_->ApproximateOffsetOf(v, k2);
sizes[i] = (limit >= start ? limit - start : 0);
}
{
MutexLock l(&mutex_);
v->Unref();
}
}
// Default implementations of convenience methods that subclasses of DB
// can call if they wish
Status DB::Put(const WriteOptions& opt, const Slice& key, const Slice& value) {
WriteBatch batch;
batch.Put(key, value);
return Write(opt, &batch);
}
Status DB::Delete(const WriteOptions& opt, const Slice& key) {
WriteBatch batch;
batch.Delete(key);
return Write(opt, &batch);
}
DB::~DB() { }
Status DB::Open(const Options& options, const std::string& dbname,
DB** dbptr) {
*dbptr = NULL;
DBImpl* impl = new DBImpl(options, dbname);
impl->mutex_.Lock();
VersionEdit edit;
Status s = impl->Recover(&edit); // Handles create_if_missing, error_if_exists
if (s.ok()) {
uint64_t new_log_number = impl->versions_->NewFileNumber();
WritableFile* lfile;
s = options.env->NewWritableFile(LogFileName(dbname, new_log_number),
&lfile);
if (s.ok()) {
edit.SetLogNumber(new_log_number);
impl->logfile_ = lfile;
impl->logfile_number_ = new_log_number;
impl->log_ = new log::Writer(lfile);
s = impl->versions_->LogAndApply(&edit, &impl->mutex_);
}
if (s.ok()) {
impl->DeleteObsoleteFiles();
impl->MaybeScheduleCompaction();
}
}
impl->mutex_.Unlock();
if (s.ok()) {
*dbptr = impl;
} else {
delete impl;
}
return s;
}
Snapshot::~Snapshot() {
}
Status DestroyDB(const std::string& dbname, const Options& options) {
Env* env = options.env;
std::vector<std::string> filenames;
// Ignore error in case directory does not exist
env->GetChildren(dbname, &filenames);
if (filenames.empty()) {
return Status::OK();
}
FileLock* lock;
const std::string lockname = LockFileName(dbname);
Status result = env->LockFile(lockname, &lock);
if (result.ok()) {
uint64_t number;
FileType type;
for (size_t i = 0; i < filenames.size(); i++) {
if (ParseFileName(filenames[i], &number, &type) &&
filenames[i] != lockname) { // Lock file will be deleted at end
Status del = env->DeleteFile(dbname + "/" + filenames[i]);
if (result.ok() && !del.ok()) {
result = del;
}
}
}
env->UnlockFile(lock); // Ignore error since state is already gone
env->DeleteFile(lockname);
env->DeleteDir(dbname); // Ignore error in case dir contains other files
}
return result;
}
} // namespace leveldb