mirror of
https://github.com/google/leveldb.git
synced 2025-01-13 05:20:06 +08:00
8cce47e450
This is beneficial when iterators are reused and seeks are not random but increasing. It is additionally beneficial with larger block sizes and keys with common prefixes. Add a benchmark "seekordered" to db_bench that reuses iterators across increasing seeks. Add support to the benchmark to count comparisons made and to support common key prefix length. Change benchmark random seeds to be reproducible for entire benchmark suite executions but unique for threads in different benchmarks runs. This changes a benchmark suite of readrandom,seekrandom from having a 100% found ratio as previously it had the same seed used for fillrandom. ./db_bench --benchmarks=fillrandom,compact,seekordered --block_size=262144 --comparisons=1 --key_prefix=100 without this change (though with benchmark changes): seekrandom : 55.309 micros/op; (631820 of 1000000 found) Comparisons: 27001049 seekordered : 1.732 micros/op; (631882 of 1000000 found) Comparisons: 26998402 with this change: seekrandom : 55.866 micros/op; (631820 of 1000000 found) Comparisons: 26952143 seekordered : 1.686 micros/op; (631882 of 1000000 found) Comparisons: 25549369 For ordered seeking, this is a reduction of 5% comparisons and a 3% speedup. For random seeking (with single use iterators) the comparisons and speed are less than 1% and likely noise. PiperOrigin-RevId: 351149832
293 lines
8.8 KiB
C++
293 lines
8.8 KiB
C++
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
//
|
|
// Decodes the blocks generated by block_builder.cc.
|
|
|
|
#include "table/block.h"
|
|
|
|
#include <algorithm>
|
|
#include <cstdint>
|
|
#include <vector>
|
|
|
|
#include "leveldb/comparator.h"
|
|
#include "table/format.h"
|
|
#include "util/coding.h"
|
|
#include "util/logging.h"
|
|
|
|
namespace leveldb {
|
|
|
|
inline uint32_t Block::NumRestarts() const {
|
|
assert(size_ >= sizeof(uint32_t));
|
|
return DecodeFixed32(data_ + size_ - sizeof(uint32_t));
|
|
}
|
|
|
|
Block::Block(const BlockContents& contents)
|
|
: data_(contents.data.data()),
|
|
size_(contents.data.size()),
|
|
owned_(contents.heap_allocated) {
|
|
if (size_ < sizeof(uint32_t)) {
|
|
size_ = 0; // Error marker
|
|
} else {
|
|
size_t max_restarts_allowed = (size_ - sizeof(uint32_t)) / sizeof(uint32_t);
|
|
if (NumRestarts() > max_restarts_allowed) {
|
|
// The size is too small for NumRestarts()
|
|
size_ = 0;
|
|
} else {
|
|
restart_offset_ = size_ - (1 + NumRestarts()) * sizeof(uint32_t);
|
|
}
|
|
}
|
|
}
|
|
|
|
Block::~Block() {
|
|
if (owned_) {
|
|
delete[] data_;
|
|
}
|
|
}
|
|
|
|
// Helper routine: decode the next block entry starting at "p",
|
|
// storing the number of shared key bytes, non_shared key bytes,
|
|
// and the length of the value in "*shared", "*non_shared", and
|
|
// "*value_length", respectively. Will not dereference past "limit".
|
|
//
|
|
// If any errors are detected, returns nullptr. Otherwise, returns a
|
|
// pointer to the key delta (just past the three decoded values).
|
|
static inline const char* DecodeEntry(const char* p, const char* limit,
|
|
uint32_t* shared, uint32_t* non_shared,
|
|
uint32_t* value_length) {
|
|
if (limit - p < 3) return nullptr;
|
|
*shared = reinterpret_cast<const uint8_t*>(p)[0];
|
|
*non_shared = reinterpret_cast<const uint8_t*>(p)[1];
|
|
*value_length = reinterpret_cast<const uint8_t*>(p)[2];
|
|
if ((*shared | *non_shared | *value_length) < 128) {
|
|
// Fast path: all three values are encoded in one byte each
|
|
p += 3;
|
|
} else {
|
|
if ((p = GetVarint32Ptr(p, limit, shared)) == nullptr) return nullptr;
|
|
if ((p = GetVarint32Ptr(p, limit, non_shared)) == nullptr) return nullptr;
|
|
if ((p = GetVarint32Ptr(p, limit, value_length)) == nullptr) return nullptr;
|
|
}
|
|
|
|
if (static_cast<uint32_t>(limit - p) < (*non_shared + *value_length)) {
|
|
return nullptr;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
class Block::Iter : public Iterator {
|
|
private:
|
|
const Comparator* const comparator_;
|
|
const char* const data_; // underlying block contents
|
|
uint32_t const restarts_; // Offset of restart array (list of fixed32)
|
|
uint32_t const num_restarts_; // Number of uint32_t entries in restart array
|
|
|
|
// current_ is offset in data_ of current entry. >= restarts_ if !Valid
|
|
uint32_t current_;
|
|
uint32_t restart_index_; // Index of restart block in which current_ falls
|
|
std::string key_;
|
|
Slice value_;
|
|
Status status_;
|
|
|
|
inline int Compare(const Slice& a, const Slice& b) const {
|
|
return comparator_->Compare(a, b);
|
|
}
|
|
|
|
// Return the offset in data_ just past the end of the current entry.
|
|
inline uint32_t NextEntryOffset() const {
|
|
return (value_.data() + value_.size()) - data_;
|
|
}
|
|
|
|
uint32_t GetRestartPoint(uint32_t index) {
|
|
assert(index < num_restarts_);
|
|
return DecodeFixed32(data_ + restarts_ + index * sizeof(uint32_t));
|
|
}
|
|
|
|
void SeekToRestartPoint(uint32_t index) {
|
|
key_.clear();
|
|
restart_index_ = index;
|
|
// current_ will be fixed by ParseNextKey();
|
|
|
|
// ParseNextKey() starts at the end of value_, so set value_ accordingly
|
|
uint32_t offset = GetRestartPoint(index);
|
|
value_ = Slice(data_ + offset, 0);
|
|
}
|
|
|
|
public:
|
|
Iter(const Comparator* comparator, const char* data, uint32_t restarts,
|
|
uint32_t num_restarts)
|
|
: comparator_(comparator),
|
|
data_(data),
|
|
restarts_(restarts),
|
|
num_restarts_(num_restarts),
|
|
current_(restarts_),
|
|
restart_index_(num_restarts_) {
|
|
assert(num_restarts_ > 0);
|
|
}
|
|
|
|
bool Valid() const override { return current_ < restarts_; }
|
|
Status status() const override { return status_; }
|
|
Slice key() const override {
|
|
assert(Valid());
|
|
return key_;
|
|
}
|
|
Slice value() const override {
|
|
assert(Valid());
|
|
return value_;
|
|
}
|
|
|
|
void Next() override {
|
|
assert(Valid());
|
|
ParseNextKey();
|
|
}
|
|
|
|
void Prev() override {
|
|
assert(Valid());
|
|
|
|
// Scan backwards to a restart point before current_
|
|
const uint32_t original = current_;
|
|
while (GetRestartPoint(restart_index_) >= original) {
|
|
if (restart_index_ == 0) {
|
|
// No more entries
|
|
current_ = restarts_;
|
|
restart_index_ = num_restarts_;
|
|
return;
|
|
}
|
|
restart_index_--;
|
|
}
|
|
|
|
SeekToRestartPoint(restart_index_);
|
|
do {
|
|
// Loop until end of current entry hits the start of original entry
|
|
} while (ParseNextKey() && NextEntryOffset() < original);
|
|
}
|
|
|
|
void Seek(const Slice& target) override {
|
|
// Binary search in restart array to find the last restart point
|
|
// with a key < target
|
|
uint32_t left = 0;
|
|
uint32_t right = num_restarts_ - 1;
|
|
int current_key_compare = 0;
|
|
|
|
if (Valid()) {
|
|
// If we're already scanning, use the current position as a starting
|
|
// point. This is beneficial if the key we're seeking to is ahead of the
|
|
// current position.
|
|
current_key_compare = Compare(key_, target);
|
|
if (current_key_compare < 0) {
|
|
// key_ is smaller than target
|
|
left = restart_index_;
|
|
} else if (current_key_compare > 0) {
|
|
right = restart_index_;
|
|
} else {
|
|
// We're seeking to the key we're already at.
|
|
return;
|
|
}
|
|
}
|
|
|
|
while (left < right) {
|
|
uint32_t mid = (left + right + 1) / 2;
|
|
uint32_t region_offset = GetRestartPoint(mid);
|
|
uint32_t shared, non_shared, value_length;
|
|
const char* key_ptr =
|
|
DecodeEntry(data_ + region_offset, data_ + restarts_, &shared,
|
|
&non_shared, &value_length);
|
|
if (key_ptr == nullptr || (shared != 0)) {
|
|
CorruptionError();
|
|
return;
|
|
}
|
|
Slice mid_key(key_ptr, non_shared);
|
|
if (Compare(mid_key, target) < 0) {
|
|
// Key at "mid" is smaller than "target". Therefore all
|
|
// blocks before "mid" are uninteresting.
|
|
left = mid;
|
|
} else {
|
|
// Key at "mid" is >= "target". Therefore all blocks at or
|
|
// after "mid" are uninteresting.
|
|
right = mid - 1;
|
|
}
|
|
}
|
|
|
|
// We might be able to use our current position within the restart block.
|
|
// This is true if we determined the key we desire is in the current block
|
|
// and is after than the current key.
|
|
assert(current_key_compare == 0 || Valid());
|
|
bool skip_seek = left == restart_index_ && current_key_compare < 0;
|
|
if (!skip_seek) {
|
|
SeekToRestartPoint(left);
|
|
}
|
|
// Linear search (within restart block) for first key >= target
|
|
while (true) {
|
|
if (!ParseNextKey()) {
|
|
return;
|
|
}
|
|
if (Compare(key_, target) >= 0) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void SeekToFirst() override {
|
|
SeekToRestartPoint(0);
|
|
ParseNextKey();
|
|
}
|
|
|
|
void SeekToLast() override {
|
|
SeekToRestartPoint(num_restarts_ - 1);
|
|
while (ParseNextKey() && NextEntryOffset() < restarts_) {
|
|
// Keep skipping
|
|
}
|
|
}
|
|
|
|
private:
|
|
void CorruptionError() {
|
|
current_ = restarts_;
|
|
restart_index_ = num_restarts_;
|
|
status_ = Status::Corruption("bad entry in block");
|
|
key_.clear();
|
|
value_.clear();
|
|
}
|
|
|
|
bool ParseNextKey() {
|
|
current_ = NextEntryOffset();
|
|
const char* p = data_ + current_;
|
|
const char* limit = data_ + restarts_; // Restarts come right after data
|
|
if (p >= limit) {
|
|
// No more entries to return. Mark as invalid.
|
|
current_ = restarts_;
|
|
restart_index_ = num_restarts_;
|
|
return false;
|
|
}
|
|
|
|
// Decode next entry
|
|
uint32_t shared, non_shared, value_length;
|
|
p = DecodeEntry(p, limit, &shared, &non_shared, &value_length);
|
|
if (p == nullptr || key_.size() < shared) {
|
|
CorruptionError();
|
|
return false;
|
|
} else {
|
|
key_.resize(shared);
|
|
key_.append(p, non_shared);
|
|
value_ = Slice(p + non_shared, value_length);
|
|
while (restart_index_ + 1 < num_restarts_ &&
|
|
GetRestartPoint(restart_index_ + 1) < current_) {
|
|
++restart_index_;
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
};
|
|
|
|
Iterator* Block::NewIterator(const Comparator* comparator) {
|
|
if (size_ < sizeof(uint32_t)) {
|
|
return NewErrorIterator(Status::Corruption("bad block contents"));
|
|
}
|
|
const uint32_t num_restarts = NumRestarts();
|
|
if (num_restarts == 0) {
|
|
return NewEmptyIterator();
|
|
} else {
|
|
return new Iter(comparator, data_, restart_offset_, num_restarts);
|
|
}
|
|
}
|
|
|
|
} // namespace leveldb
|