12 KiB
Configuration library for JVM languages.
Overview
- implemented in plain Java with no dependencies
- extensive test coverage
- supports files in three formats: Java properties, JSON, and a human-friendly JSON superset
- merges multiple files across all formats
- can load from files, URLs, or classpath
- good support for "nesting" (treat any subtree of the config the same as the whole config)
- users can override the config with Java system properties,
java -Dmyapp.foo.bar=10
- supports configuring an app, with its framework and libraries,
all from a single file such as
application.conf
- parses duration and size settings, "512k" or "10 seconds"
- converts types, so if you ask for a boolean and the value is the string "yes", or you ask for a float and the value is an int, it will figure it out.
- JSON superset features:
- comments
- includes
- substitutions (
"foo" : ${bar}
,"foo" : Hello ${who}
) - properties-like notation (
a.b=c
) - less noisy, more lenient syntax
- substitute environment variables
This library limits itself to config files. If you want to load config from a database or something, you would need to write some custom code. The library has nice support for merging configurations so if you build one from a custom source it's easy to merge it in.
License
The license is Apache 2.0, see LICENSE-2.0.txt.
Binary Releases
You can find published releases here:
Bugs and Patches
Report bugs to the GitHub issue tracker. Send patches as pull requests on GitHub.
Along with any pull requests (or other means of contributing), please state that the contribution is your original work (or that you have the authority to license it) and that you license the work under the Apache 2.0 license.
Whether or not you state this explicitly, by submitting any copyrighted material via pull request, email, or other means you agree to license your the material under the Apache 2.0 license and warrant that you have the legal authority to do so.
Build
The build uses sbt and the tests are written in Scala; however, the library itself is plain Java and the published jar has no Scala dependency.
API Example
Config conf = ConfigFactory.load();
int bar1 = conf.getInt("foo.bar");
Config foo = conf.getConfig("foo");
int bar2 = foo.getInt("bar");
Longer Examples
See the examples in the examples/
directory.
You can run these from the sbt console with the commands project simple-app
and then run
.
In brief, as shown in the examples:
- libraries should use a
Config
instance provided by the app, if any, and useConfigFactory.load()
if no specialConfig
is provided. Libraries should put their defaults in areference.conf
on the classpath. - apps can create a
Config
however they want (ConfigFactory.load()
is easiest and least-surprising), then provide it to their libraries. AConfig
can be created with the parser methods inConfigFactory
or built up from any file format or data source you like with the methods inConfigValueFactory
.
Standard behavior
The convenience method ConfigFactory.load()
loads the following
(first-listed are higher priority):
- system properties
application.conf
(all resources on classpath with this name)application.json
(all resources on classpath with this name)application.properties
(all resources on classpath with this name)reference.conf
(all resources on classpath with this name)
The idea is that libraries and frameworks should ship with a
reference.conf
in their jar. Applications should provide an
application.conf
, or if they want to create multiple
configurations in a single JVM, they could use
ConfigFactory.load("myapp")
to load their own myapp.conf
.
Libraries and frameworks should default to ConfigFactory.load()
if the application does not provide a custom Config
object. Libraries and frameworks should also allow the application
to provide a custom Config
object to be used instead of the
default, in case the application needs multiple configurations in
one JVM or wants to load extra config files from somewhere.
For applications using application.{conf,json,properties}
,
system properties can be used to force a different config source:
config.resource
specifies a resource name - not a basename, i.e.application.conf
notapplication
config.file
specifies a filesystem path, again it should include the extension, not be a basenameconfig.url
specifies a URL
These system properties specify a replacement for
application.{conf,json,properties}
, not an addition. They only
affect apps using the default ConfigFactory.load()
configuration. In the replacement config file, you can use
include "application"
to include the original default config
file; after the include statement you could go on to override
certain settings.
JSON Superset
Tentatively called "Human-Optimized Config Object Notation" or
HOCON, also called .conf
, see HOCON.md in this directory for more
detail.
Features of HOCON
- Comments, with
#
or//
- Allow omitting the
{}
around a root object - Allow
=
as a synonym for:
- Allow omitting the
=
or:
before a{
sofoo { a : 42 }
- Allow omitting commas as long as there's a newline
- Allow trailing commas after last element in objects and arrays
- Allow unquoted strings for keys and values
- Unquoted keys can use dot-notation for nested objects,
foo.bar=42
meansfoo { bar : 42 }
- Duplicate keys are allowed; later values override earlier, except for object-valued keys where the two objects are merged recursively
include
feature merges root object in another file into current object, sofoo { include "bar.json" }
merges keys inbar.json
into the objectfoo
- include with no file extension includes any of
.conf
,.json
,.properties
- substitutions
foo : ${a.b}
sets keyfoo
to the same value as theb
field in thea
object - substitutions concatenate into unquoted strings,
foo : the quick ${colors.fox} jumped
- substitutions fall back to environment variables if they don't
resolve in the config itself, so
${HOME}
would work as you expect. Also, most configs have system properties merged in so you could use${user.home}
. - substitutions normally cause an error if unresolved, but
there is a syntax
${?a.b}
to permit them to be missing.
Examples of HOCON
All of these are valid HOCON.
Start with valid JSON:
{
"foo" : {
"bar" : 10,
"baz" : 12
}
}
Drop root braces:
"foo" : {
"bar" : 10,
"baz" : 12
}
Drop quotes:
foo : {
bar : 10,
baz : 12
}
Use =
and omit it before {
:
foo {
bar = 10,
baz = 12
}
Remove commas:
foo {
bar = 10
baz = 12
}
Use dotted notation for unquoted keys:
foo.bar=10
foo.baz=12
Put the dotted-notation fields on a single line:
foo.bar=10, foo.baz=12
The syntax is well-defined (including handling of whitespace and escaping). But it handles many reasonable ways you might want to format the file.
Note that while you can write HOCON that looks a lot like a Java properties file (and many properties files will parse as HOCON), the details of escaping, whitespace handling, comments, and so forth are more like JSON. The spec (see HOCON.md in this directory) has some more detailed notes on this topic.
Uses of Substitutions
The ${foo.bar}
substitution feature lets you avoid cut-and-paste
in some nice ways.
Factor out common values
This is the obvious use,
standard-timeout = 10ms
foo.timeout = ${standard-timeout}
bar.timeout = ${standard-timeout}
Inheritance
If you duplicate a field with an object value, then the objects are merged with last-one-wins. So:
foo = { a : 42, c : 5 }
foo = { b : 43, c : 6 }
means the same as:
foo = { a : 42, b : 43, c : 6 }
You can take advantage of this for "inheritance":
data-center-generic = { cluster-size = 6 }
data-center-east = ${data-center-generic}
data-center-east = { name = "east" }
data-center-west = ${data-center-generic}
data-center-west = { name = "west", cluster-size = 8 }
Using include
statements you could split this across multiple
files, too.
Optional system or env variable overrides
In default uses of the library, exact-match system properties
already override the corresponding config properties. However,
you can add your own overrides, or allow environment variables to
override, using the ${?foo}
substitution syntax.
basedir = "/whatever/whatever"
basedir = ${?FORCED_BASEDIR}
Here, the override field basedir = ${?FORCED_BASEDIR}
simply
vanishes if there's no value for FORCED_BASEDIR
, but if you set
an environment variable FORCED_BASEDIR
for example, it would be
used.
A natural extension of this idea is to support several different environment variable names or system property names, if you aren't sure which one will exist in the target environment.
Object fields and array elements with a ${?foo}
substitution
value just disappear if the substitution is not found:
// this array could have one or two elements
path = [ "a", ${?OPTIONAL_A} ]
Future Directions
Here are some features that might be nice to add.
- "myapp.d directory": allow parsing a directory. All
.json
,.properties
and.conf
files should be loaded in a deterministic order based on their filename. If you include a file and it turns out to be a directory then it would be processed in this way. - some way to merge array types. One approach could be:
searchPath=${searchPath} ["/usr/local/foo"]
, which involves two features: 1) substitutions referring to the key being assigned would have to look at that key's value later in the merge stack (rather than complaining about circularity); 2) arrays would have to be merged if a series of them appear after a key, similar to how strings are concatenated already. A simpler but much more limited approach would add+=
as an alternative to:
/=
, where+=
would append an array value to the array's previous value. (Note that regular=
already merges object values, to avoid object merge you have to first set the object to a non-object such as null, then set a new object. For consistency, if there's "array concatenation" within one value, maybe objects should also be able to merge within one value.)
Rationale
(For the curious.)
The three file formats each have advantages.
- Java
.properties
:- Java standard, built in to JVM
- Supported by many tools such as IDEs
- JSON:
- easy to generate programmatically
- well-defined and standard
- bad for human maintenance, with no way to write comments, and no mechanisms to avoid duplication of similar config sections
- HOCON/
.conf
:- nice for humans to read, type, and maintain, with more lenient syntax
- built-in tools to avoid cut-and-paste
- ways to refer to the system environment, such as system properties and environment variables
The idea would be to use JSON if you're writing a script to spit out config, and use HOCON if you're maintaining config by hand. If you're doing both, then mix the two.
Two alternatives to HOCON syntax could be:
- YAML is also a JSON superset and has a mechanism for adding
custom types, so the include statements in HOCON could become
a custom type tag like
!include
, and substitutions in HOCON could become a custom tag such as!subst
, for example. The result is somewhat clunky to write, but would have the same in-memory representation as the HOCON approach. - Put a syntax inside JSON strings, so you might write something
like
"$include" : "filename"
or allow"foo" : "${bar}"
. This is a way to tunnel new syntax through a JSON parser, but other than the implementation benefit (using a standard JSON parser), it doesn't really work. It's a bad syntax for human maintenance, and it's not valid JSON anymore because properly interpreting it requires treating some valid JSON strings as something other than plain strings. A better approach is to allow mixing true JSON files into the config but also support a nicer format.