mirror of
https://github.com/google/benchmark.git
synced 2025-01-28 21:00:15 +08:00
f3b3dd99be
* remove unnecessary weights * use sample standard deviation * add contributor information * remove redundant code * initialize variable to eliminate compiler warning
325 lines
11 KiB
C++
325 lines
11 KiB
C++
// Copyright 2016 Ismael Jimenez Martinez. All rights reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
// Source project : https://github.com/ismaelJimenez/cpp.leastsq
|
|
// Adapted to be used with google benchmark
|
|
|
|
#include "benchmark/benchmark_api.h"
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include "check.h"
|
|
#include "complexity.h"
|
|
#include "stat.h"
|
|
|
|
namespace benchmark {
|
|
|
|
// Internal function to calculate the different scalability forms
|
|
BigOFunc* FittingCurve(BigO complexity) {
|
|
switch (complexity) {
|
|
case oN:
|
|
return [](int n) -> double { return n; };
|
|
case oNSquared:
|
|
return [](int n) -> double { return std::pow(n, 2); };
|
|
case oNCubed:
|
|
return [](int n) -> double { return std::pow(n, 3); };
|
|
case oLogN:
|
|
return [](int n) { return log2(n); };
|
|
case oNLogN:
|
|
return [](int n) { return n * log2(n); };
|
|
case o1:
|
|
default:
|
|
return [](int) { return 1.0; };
|
|
}
|
|
}
|
|
|
|
// Function to return an string for the calculated complexity
|
|
std::string GetBigOString(BigO complexity) {
|
|
switch (complexity) {
|
|
case oN:
|
|
return "N";
|
|
case oNSquared:
|
|
return "N^2";
|
|
case oNCubed:
|
|
return "N^3";
|
|
case oLogN:
|
|
return "lgN";
|
|
case oNLogN:
|
|
return "NlgN";
|
|
case o1:
|
|
return "(1)";
|
|
default:
|
|
return "f(N)";
|
|
}
|
|
}
|
|
|
|
// Find the coefficient for the high-order term in the running time, by
|
|
// minimizing the sum of squares of relative error, for the fitting curve
|
|
// given by the lambda expresion.
|
|
// - n : Vector containing the size of the benchmark tests.
|
|
// - time : Vector containing the times for the benchmark tests.
|
|
// - fitting_curve : lambda expresion (e.g. [](int n) {return n; };).
|
|
|
|
// For a deeper explanation on the algorithm logic, look the README file at
|
|
// http://github.com/ismaelJimenez/Minimal-Cpp-Least-Squared-Fit
|
|
|
|
LeastSq MinimalLeastSq(const std::vector<int>& n,
|
|
const std::vector<double>& time,
|
|
BigOFunc* fitting_curve) {
|
|
double sigma_gn = 0.0;
|
|
double sigma_gn_squared = 0.0;
|
|
double sigma_time = 0.0;
|
|
double sigma_time_gn = 0.0;
|
|
|
|
// Calculate least square fitting parameter
|
|
for (size_t i = 0; i < n.size(); ++i) {
|
|
double gn_i = fitting_curve(n[i]);
|
|
sigma_gn += gn_i;
|
|
sigma_gn_squared += gn_i * gn_i;
|
|
sigma_time += time[i];
|
|
sigma_time_gn += time[i] * gn_i;
|
|
}
|
|
|
|
LeastSq result;
|
|
result.complexity = oLambda;
|
|
|
|
// Calculate complexity.
|
|
result.coef = sigma_time_gn / sigma_gn_squared;
|
|
|
|
// Calculate RMS
|
|
double rms = 0.0;
|
|
for (size_t i = 0; i < n.size(); ++i) {
|
|
double fit = result.coef * fitting_curve(n[i]);
|
|
rms += pow((time[i] - fit), 2);
|
|
}
|
|
|
|
// Normalized RMS by the mean of the observed values
|
|
double mean = sigma_time / n.size();
|
|
result.rms = sqrt(rms / n.size()) / mean;
|
|
|
|
return result;
|
|
}
|
|
|
|
// Find the coefficient for the high-order term in the running time, by
|
|
// minimizing the sum of squares of relative error.
|
|
// - n : Vector containing the size of the benchmark tests.
|
|
// - time : Vector containing the times for the benchmark tests.
|
|
// - complexity : If different than oAuto, the fitting curve will stick to
|
|
// this one. If it is oAuto, it will be calculated the best
|
|
// fitting curve.
|
|
LeastSq MinimalLeastSq(const std::vector<int>& n,
|
|
const std::vector<double>& time, const BigO complexity) {
|
|
CHECK_EQ(n.size(), time.size());
|
|
CHECK_GE(n.size(), 2); // Do not compute fitting curve is less than two
|
|
// benchmark runs are given
|
|
CHECK_NE(complexity, oNone);
|
|
|
|
LeastSq best_fit;
|
|
|
|
if (complexity == oAuto) {
|
|
std::vector<BigO> fit_curves = {oLogN, oN, oNLogN, oNSquared, oNCubed};
|
|
|
|
// Take o1 as default best fitting curve
|
|
best_fit = MinimalLeastSq(n, time, FittingCurve(o1));
|
|
best_fit.complexity = o1;
|
|
|
|
// Compute all possible fitting curves and stick to the best one
|
|
for (const auto& fit : fit_curves) {
|
|
LeastSq current_fit = MinimalLeastSq(n, time, FittingCurve(fit));
|
|
if (current_fit.rms < best_fit.rms) {
|
|
best_fit = current_fit;
|
|
best_fit.complexity = fit;
|
|
}
|
|
}
|
|
} else {
|
|
best_fit = MinimalLeastSq(n, time, FittingCurve(complexity));
|
|
best_fit.complexity = complexity;
|
|
}
|
|
|
|
return best_fit;
|
|
}
|
|
|
|
std::vector<BenchmarkReporter::Run> ComputeStats(
|
|
const std::vector<BenchmarkReporter::Run>& reports) {
|
|
typedef BenchmarkReporter::Run Run;
|
|
std::vector<Run> results;
|
|
|
|
auto error_count =
|
|
std::count_if(reports.begin(), reports.end(),
|
|
[](Run const& run) { return run.error_occurred; });
|
|
|
|
if (reports.size() - error_count < 2) {
|
|
// We don't report aggregated data if there was a single run.
|
|
return results;
|
|
}
|
|
// Accumulators.
|
|
Stat1_d real_accumulated_time_stat;
|
|
Stat1_d cpu_accumulated_time_stat;
|
|
Stat1_d bytes_per_second_stat;
|
|
Stat1_d items_per_second_stat;
|
|
// All repetitions should be run with the same number of iterations so we
|
|
// can take this information from the first benchmark.
|
|
int64_t const run_iterations = reports.front().iterations;
|
|
// create stats for user counters
|
|
struct CounterStat {
|
|
Counter c;
|
|
Stat1_d s;
|
|
};
|
|
std::map< std::string, CounterStat > counter_stats;
|
|
for(Run const& r : reports) {
|
|
for(auto const& cnt : r.counters) {
|
|
auto it = counter_stats.find(cnt.first);
|
|
if(it == counter_stats.end()) {
|
|
counter_stats.insert({cnt.first, {cnt.second, Stat1_d{}}});
|
|
} else {
|
|
CHECK_EQ(counter_stats[cnt.first].c.flags, cnt.second.flags);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Populate the accumulators.
|
|
for (Run const& run : reports) {
|
|
CHECK_EQ(reports[0].benchmark_name, run.benchmark_name);
|
|
CHECK_EQ(run_iterations, run.iterations);
|
|
if (run.error_occurred) continue;
|
|
real_accumulated_time_stat +=
|
|
Stat1_d(run.real_accumulated_time / run.iterations);
|
|
cpu_accumulated_time_stat +=
|
|
Stat1_d(run.cpu_accumulated_time / run.iterations);
|
|
items_per_second_stat += Stat1_d(run.items_per_second);
|
|
bytes_per_second_stat += Stat1_d(run.bytes_per_second);
|
|
// user counters
|
|
for(auto const& cnt : run.counters) {
|
|
auto it = counter_stats.find(cnt.first);
|
|
CHECK_NE(it, counter_stats.end());
|
|
it->second.s += Stat1_d(cnt.second);
|
|
}
|
|
}
|
|
|
|
// Get the data from the accumulator to BenchmarkReporter::Run's.
|
|
Run mean_data;
|
|
mean_data.benchmark_name = reports[0].benchmark_name + "_mean";
|
|
mean_data.iterations = run_iterations;
|
|
mean_data.real_accumulated_time =
|
|
real_accumulated_time_stat.Mean() * run_iterations;
|
|
mean_data.cpu_accumulated_time =
|
|
cpu_accumulated_time_stat.Mean() * run_iterations;
|
|
mean_data.bytes_per_second = bytes_per_second_stat.Mean();
|
|
mean_data.items_per_second = items_per_second_stat.Mean();
|
|
mean_data.time_unit = reports[0].time_unit;
|
|
// user counters
|
|
for(auto const& kv : counter_stats) {
|
|
auto c = Counter(kv.second.s.Mean(), counter_stats[kv.first].c.flags);
|
|
mean_data.counters[kv.first] = c;
|
|
}
|
|
|
|
// Only add label to mean/stddev if it is same for all runs
|
|
mean_data.report_label = reports[0].report_label;
|
|
for (std::size_t i = 1; i < reports.size(); i++) {
|
|
if (reports[i].report_label != reports[0].report_label) {
|
|
mean_data.report_label = "";
|
|
break;
|
|
}
|
|
}
|
|
|
|
Run stddev_data;
|
|
stddev_data.benchmark_name = reports[0].benchmark_name + "_stddev";
|
|
stddev_data.report_label = mean_data.report_label;
|
|
stddev_data.iterations = 0;
|
|
stddev_data.real_accumulated_time = real_accumulated_time_stat.StdDev();
|
|
stddev_data.cpu_accumulated_time = cpu_accumulated_time_stat.StdDev();
|
|
stddev_data.bytes_per_second = bytes_per_second_stat.StdDev();
|
|
stddev_data.items_per_second = items_per_second_stat.StdDev();
|
|
stddev_data.time_unit = reports[0].time_unit;
|
|
// user counters
|
|
for(auto const& kv : counter_stats) {
|
|
auto c = Counter(kv.second.s.StdDev(), counter_stats[kv.first].c.flags);
|
|
stddev_data.counters[kv.first] = c;
|
|
}
|
|
|
|
results.push_back(mean_data);
|
|
results.push_back(stddev_data);
|
|
return results;
|
|
}
|
|
|
|
std::vector<BenchmarkReporter::Run> ComputeBigO(
|
|
const std::vector<BenchmarkReporter::Run>& reports) {
|
|
typedef BenchmarkReporter::Run Run;
|
|
std::vector<Run> results;
|
|
|
|
if (reports.size() < 2) return results;
|
|
|
|
// Accumulators.
|
|
std::vector<int> n;
|
|
std::vector<double> real_time;
|
|
std::vector<double> cpu_time;
|
|
|
|
// Populate the accumulators.
|
|
for (const Run& run : reports) {
|
|
CHECK_GT(run.complexity_n, 0) << "Did you forget to call SetComplexityN?";
|
|
n.push_back(run.complexity_n);
|
|
real_time.push_back(run.real_accumulated_time / run.iterations);
|
|
cpu_time.push_back(run.cpu_accumulated_time / run.iterations);
|
|
}
|
|
|
|
LeastSq result_cpu;
|
|
LeastSq result_real;
|
|
|
|
if (reports[0].complexity == oLambda) {
|
|
result_cpu = MinimalLeastSq(n, cpu_time, reports[0].complexity_lambda);
|
|
result_real = MinimalLeastSq(n, real_time, reports[0].complexity_lambda);
|
|
} else {
|
|
result_cpu = MinimalLeastSq(n, cpu_time, reports[0].complexity);
|
|
result_real = MinimalLeastSq(n, real_time, result_cpu.complexity);
|
|
}
|
|
std::string benchmark_name =
|
|
reports[0].benchmark_name.substr(0, reports[0].benchmark_name.find('/'));
|
|
|
|
// Get the data from the accumulator to BenchmarkReporter::Run's.
|
|
Run big_o;
|
|
big_o.benchmark_name = benchmark_name + "_BigO";
|
|
big_o.iterations = 0;
|
|
big_o.real_accumulated_time = result_real.coef;
|
|
big_o.cpu_accumulated_time = result_cpu.coef;
|
|
big_o.report_big_o = true;
|
|
big_o.complexity = result_cpu.complexity;
|
|
|
|
// All the time results are reported after being multiplied by the
|
|
// time unit multiplier. But since RMS is a relative quantity it
|
|
// should not be multiplied at all. So, here, we _divide_ it by the
|
|
// multiplier so that when it is multiplied later the result is the
|
|
// correct one.
|
|
double multiplier = GetTimeUnitMultiplier(reports[0].time_unit);
|
|
|
|
// Only add label to mean/stddev if it is same for all runs
|
|
Run rms;
|
|
big_o.report_label = reports[0].report_label;
|
|
rms.benchmark_name = benchmark_name + "_RMS";
|
|
rms.report_label = big_o.report_label;
|
|
rms.iterations = 0;
|
|
rms.real_accumulated_time = result_real.rms / multiplier;
|
|
rms.cpu_accumulated_time = result_cpu.rms / multiplier;
|
|
rms.report_rms = true;
|
|
rms.complexity = result_cpu.complexity;
|
|
// don't forget to keep the time unit, or we won't be able to
|
|
// recover the correct value.
|
|
rms.time_unit = reports[0].time_unit;
|
|
|
|
results.push_back(big_o);
|
|
results.push_back(rms);
|
|
return results;
|
|
}
|
|
|
|
} // end namespace benchmark
|