mirror of
https://github.com/google/benchmark.git
synced 2025-01-15 06:10:15 +08:00
f92903cc53
This is a shameless rip-off of https://github.com/google/benchmark/pull/646
I did promise to look into why that proposed PR was producing
so much worse assembly, and so i finally did.
The reason is - that diff changes `size_t` (unsigned) to `int64_t` (signed).
There is this nice little `assert`:
7a1c370283/include/benchmark/benchmark.h (L744)
It ensures that we didn't magically decide to advance our iterator
when we should have finished benchmarking.
When `cached_` was unsigned, the `assert` was `cached_ UGT 0`.
But we only ever get to that `assert` if `cached_ NE 0`,
and naturally if `cached_` is not `0`, then it is bigger than `0`,
so the `assert` is tautological, and gets folded away.
But now that `cached_` became signed, the assert became `cached_ SGT 0`.
And we still only know that `cached_ NE 0`, so the assert can't be
optimized out, or at least it doesn't currently.
Regardless of whether or not that is a bug in itself,
that particular diff would have regressed the normal 64-bit systems,
by halving the maximal iteration space (since we go from unsigned counter
to signed one, of the same bit-width), which seems like a bug.
And just so it happens, fixing *this* bug, fixes the other bug.
This produces fully (bit-by-bit) identical state_assembly_test.s
The filecheck change is actually needed regardless of this patch,
else this test does not pass for me even without this diff.
239 lines
8.0 KiB
C++
239 lines
8.0 KiB
C++
// Copyright 2016 Ismael Jimenez Martinez. All rights reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
// Source project : https://github.com/ismaelJimenez/cpp.leastsq
|
|
// Adapted to be used with google benchmark
|
|
|
|
#include "benchmark/benchmark.h"
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include "check.h"
|
|
#include "complexity.h"
|
|
|
|
namespace benchmark {
|
|
|
|
// Internal function to calculate the different scalability forms
|
|
BigOFunc* FittingCurve(BigO complexity) {
|
|
static const double kLog2E = 1.44269504088896340736;
|
|
switch (complexity) {
|
|
case oN:
|
|
return [](IterationCount n) -> double { return static_cast<double>(n); };
|
|
case oNSquared:
|
|
return [](IterationCount n) -> double { return std::pow(n, 2); };
|
|
case oNCubed:
|
|
return [](IterationCount n) -> double { return std::pow(n, 3); };
|
|
case oLogN:
|
|
/* Note: can't use log2 because Android's GNU STL lacks it */
|
|
return
|
|
[](IterationCount n) { return kLog2E * log(static_cast<double>(n)); };
|
|
case oNLogN:
|
|
/* Note: can't use log2 because Android's GNU STL lacks it */
|
|
return [](IterationCount n) {
|
|
return kLog2E * n * log(static_cast<double>(n));
|
|
};
|
|
case o1:
|
|
default:
|
|
return [](IterationCount) { return 1.0; };
|
|
}
|
|
}
|
|
|
|
// Function to return an string for the calculated complexity
|
|
std::string GetBigOString(BigO complexity) {
|
|
switch (complexity) {
|
|
case oN:
|
|
return "N";
|
|
case oNSquared:
|
|
return "N^2";
|
|
case oNCubed:
|
|
return "N^3";
|
|
case oLogN:
|
|
return "lgN";
|
|
case oNLogN:
|
|
return "NlgN";
|
|
case o1:
|
|
return "(1)";
|
|
default:
|
|
return "f(N)";
|
|
}
|
|
}
|
|
|
|
// Find the coefficient for the high-order term in the running time, by
|
|
// minimizing the sum of squares of relative error, for the fitting curve
|
|
// given by the lambda expression.
|
|
// - n : Vector containing the size of the benchmark tests.
|
|
// - time : Vector containing the times for the benchmark tests.
|
|
// - fitting_curve : lambda expression (e.g. [](int64_t n) {return n; };).
|
|
|
|
// For a deeper explanation on the algorithm logic, please refer to
|
|
// https://en.wikipedia.org/wiki/Least_squares#Least_squares,_regression_analysis_and_statistics
|
|
|
|
LeastSq MinimalLeastSq(const std::vector<int64_t>& n,
|
|
const std::vector<double>& time,
|
|
BigOFunc* fitting_curve) {
|
|
double sigma_gn = 0.0;
|
|
double sigma_gn_squared = 0.0;
|
|
double sigma_time = 0.0;
|
|
double sigma_time_gn = 0.0;
|
|
|
|
// Calculate least square fitting parameter
|
|
for (size_t i = 0; i < n.size(); ++i) {
|
|
double gn_i = fitting_curve(n[i]);
|
|
sigma_gn += gn_i;
|
|
sigma_gn_squared += gn_i * gn_i;
|
|
sigma_time += time[i];
|
|
sigma_time_gn += time[i] * gn_i;
|
|
}
|
|
|
|
LeastSq result;
|
|
result.complexity = oLambda;
|
|
|
|
// Calculate complexity.
|
|
result.coef = sigma_time_gn / sigma_gn_squared;
|
|
|
|
// Calculate RMS
|
|
double rms = 0.0;
|
|
for (size_t i = 0; i < n.size(); ++i) {
|
|
double fit = result.coef * fitting_curve(n[i]);
|
|
rms += pow((time[i] - fit), 2);
|
|
}
|
|
|
|
// Normalized RMS by the mean of the observed values
|
|
double mean = sigma_time / n.size();
|
|
result.rms = sqrt(rms / n.size()) / mean;
|
|
|
|
return result;
|
|
}
|
|
|
|
// Find the coefficient for the high-order term in the running time, by
|
|
// minimizing the sum of squares of relative error.
|
|
// - n : Vector containing the size of the benchmark tests.
|
|
// - time : Vector containing the times for the benchmark tests.
|
|
// - complexity : If different than oAuto, the fitting curve will stick to
|
|
// this one. If it is oAuto, it will be calculated the best
|
|
// fitting curve.
|
|
LeastSq MinimalLeastSq(const std::vector<int64_t>& n,
|
|
const std::vector<double>& time, const BigO complexity) {
|
|
CHECK_EQ(n.size(), time.size());
|
|
CHECK_GE(n.size(), 2); // Do not compute fitting curve is less than two
|
|
// benchmark runs are given
|
|
CHECK_NE(complexity, oNone);
|
|
|
|
LeastSq best_fit;
|
|
|
|
if (complexity == oAuto) {
|
|
std::vector<BigO> fit_curves = {oLogN, oN, oNLogN, oNSquared, oNCubed};
|
|
|
|
// Take o1 as default best fitting curve
|
|
best_fit = MinimalLeastSq(n, time, FittingCurve(o1));
|
|
best_fit.complexity = o1;
|
|
|
|
// Compute all possible fitting curves and stick to the best one
|
|
for (const auto& fit : fit_curves) {
|
|
LeastSq current_fit = MinimalLeastSq(n, time, FittingCurve(fit));
|
|
if (current_fit.rms < best_fit.rms) {
|
|
best_fit = current_fit;
|
|
best_fit.complexity = fit;
|
|
}
|
|
}
|
|
} else {
|
|
best_fit = MinimalLeastSq(n, time, FittingCurve(complexity));
|
|
best_fit.complexity = complexity;
|
|
}
|
|
|
|
return best_fit;
|
|
}
|
|
|
|
std::vector<BenchmarkReporter::Run> ComputeBigO(
|
|
const std::vector<BenchmarkReporter::Run>& reports) {
|
|
typedef BenchmarkReporter::Run Run;
|
|
std::vector<Run> results;
|
|
|
|
if (reports.size() < 2) return results;
|
|
|
|
// Accumulators.
|
|
std::vector<int64_t> n;
|
|
std::vector<double> real_time;
|
|
std::vector<double> cpu_time;
|
|
|
|
// Populate the accumulators.
|
|
for (const Run& run : reports) {
|
|
CHECK_GT(run.complexity_n, 0) << "Did you forget to call SetComplexityN?";
|
|
n.push_back(run.complexity_n);
|
|
real_time.push_back(run.real_accumulated_time / run.iterations);
|
|
cpu_time.push_back(run.cpu_accumulated_time / run.iterations);
|
|
}
|
|
|
|
LeastSq result_cpu;
|
|
LeastSq result_real;
|
|
|
|
if (reports[0].complexity == oLambda) {
|
|
result_cpu = MinimalLeastSq(n, cpu_time, reports[0].complexity_lambda);
|
|
result_real = MinimalLeastSq(n, real_time, reports[0].complexity_lambda);
|
|
} else {
|
|
result_cpu = MinimalLeastSq(n, cpu_time, reports[0].complexity);
|
|
result_real = MinimalLeastSq(n, real_time, result_cpu.complexity);
|
|
}
|
|
|
|
// Drop the 'args' when reporting complexity.
|
|
auto run_name = reports[0].run_name;
|
|
run_name.args.clear();
|
|
|
|
// Get the data from the accumulator to BenchmarkReporter::Run's.
|
|
Run big_o;
|
|
big_o.run_name = run_name;
|
|
big_o.run_type = BenchmarkReporter::Run::RT_Aggregate;
|
|
big_o.repetitions = reports[0].repetitions;
|
|
big_o.repetition_index = Run::no_repetition_index;
|
|
big_o.threads = reports[0].threads;
|
|
big_o.aggregate_name = "BigO";
|
|
big_o.report_label = reports[0].report_label;
|
|
big_o.iterations = 0;
|
|
big_o.real_accumulated_time = result_real.coef;
|
|
big_o.cpu_accumulated_time = result_cpu.coef;
|
|
big_o.report_big_o = true;
|
|
big_o.complexity = result_cpu.complexity;
|
|
|
|
// All the time results are reported after being multiplied by the
|
|
// time unit multiplier. But since RMS is a relative quantity it
|
|
// should not be multiplied at all. So, here, we _divide_ it by the
|
|
// multiplier so that when it is multiplied later the result is the
|
|
// correct one.
|
|
double multiplier = GetTimeUnitMultiplier(reports[0].time_unit);
|
|
|
|
// Only add label to mean/stddev if it is same for all runs
|
|
Run rms;
|
|
rms.run_name = run_name;
|
|
rms.run_type = BenchmarkReporter::Run::RT_Aggregate;
|
|
rms.aggregate_name = "RMS";
|
|
rms.report_label = big_o.report_label;
|
|
rms.iterations = 0;
|
|
rms.repetition_index = Run::no_repetition_index;
|
|
rms.repetitions = reports[0].repetitions;
|
|
rms.threads = reports[0].threads;
|
|
rms.real_accumulated_time = result_real.rms / multiplier;
|
|
rms.cpu_accumulated_time = result_cpu.rms / multiplier;
|
|
rms.report_rms = true;
|
|
rms.complexity = result_cpu.complexity;
|
|
// don't forget to keep the time unit, or we won't be able to
|
|
// recover the correct value.
|
|
rms.time_unit = reports[0].time_unit;
|
|
|
|
results.push_back(big_o);
|
|
results.push_back(rms);
|
|
return results;
|
|
}
|
|
|
|
} // end namespace benchmark
|