mirror of
https://github.com/google/benchmark.git
synced 2025-01-16 06:40:13 +08:00
d6ba952fc1
Despite the wide variety of the features we provide, some people still have the audacity to complain and demand more. Concretely, i *very* often would like to see the overall result of the benchmark. Is the 'new' better or worse, overall, over all the non-aggregate time/cpu measurements. This comes up for me most often when i want to quickly see what effect some LLVM optimization change has on the benchmark. The idea is straight-forward, just produce four lists: wall times for LHS benchmark, CPU times for LHS benchmark, wall times for RHS benchmark, CPU times for RHS benchmark; then compute geomean for each one of those four lists, and compute the two percentage change between * geomean wall time for LHS benchmark and geomean wall time for RHS benchmark * geomean CPU time for LHS benchmark and geomean CPU time for RHS benchmark and voila! It is complicated by the fact that it needs to graciously handle different time units, so pandas.Timedelta dependency is introduced. That is the only library that does not barf upon floating times, i have tried numpy.timedelta64 (only takes integers) and python's datetime.timedelta (does not take nanosecons), and they won't do. Fixes https://github.com/google/benchmark/issues/1147
1145 lines
44 KiB
Python
1145 lines
44 KiB
Python
"""report.py - Utilities for reporting statistics about benchmark results
|
|
"""
|
|
|
|
import unittest
|
|
import os
|
|
import re
|
|
import copy
|
|
import random
|
|
|
|
from scipy.stats import mannwhitneyu, gmean
|
|
from numpy import array
|
|
from pandas import Timedelta
|
|
|
|
|
|
class BenchmarkColor(object):
|
|
def __init__(self, name, code):
|
|
self.name = name
|
|
self.code = code
|
|
|
|
def __repr__(self):
|
|
return '%s%r' % (self.__class__.__name__,
|
|
(self.name, self.code))
|
|
|
|
def __format__(self, format):
|
|
return self.code
|
|
|
|
|
|
# Benchmark Colors Enumeration
|
|
BC_NONE = BenchmarkColor('NONE', '')
|
|
BC_MAGENTA = BenchmarkColor('MAGENTA', '\033[95m')
|
|
BC_CYAN = BenchmarkColor('CYAN', '\033[96m')
|
|
BC_OKBLUE = BenchmarkColor('OKBLUE', '\033[94m')
|
|
BC_OKGREEN = BenchmarkColor('OKGREEN', '\033[32m')
|
|
BC_HEADER = BenchmarkColor('HEADER', '\033[92m')
|
|
BC_WARNING = BenchmarkColor('WARNING', '\033[93m')
|
|
BC_WHITE = BenchmarkColor('WHITE', '\033[97m')
|
|
BC_FAIL = BenchmarkColor('FAIL', '\033[91m')
|
|
BC_ENDC = BenchmarkColor('ENDC', '\033[0m')
|
|
BC_BOLD = BenchmarkColor('BOLD', '\033[1m')
|
|
BC_UNDERLINE = BenchmarkColor('UNDERLINE', '\033[4m')
|
|
|
|
UTEST_MIN_REPETITIONS = 2
|
|
UTEST_OPTIMAL_REPETITIONS = 9 # Lowest reasonable number, More is better.
|
|
UTEST_COL_NAME = "_pvalue"
|
|
|
|
|
|
def color_format(use_color, fmt_str, *args, **kwargs):
|
|
"""
|
|
Return the result of 'fmt_str.format(*args, **kwargs)' after transforming
|
|
'args' and 'kwargs' according to the value of 'use_color'. If 'use_color'
|
|
is False then all color codes in 'args' and 'kwargs' are replaced with
|
|
the empty string.
|
|
"""
|
|
assert use_color is True or use_color is False
|
|
if not use_color:
|
|
args = [arg if not isinstance(arg, BenchmarkColor) else BC_NONE
|
|
for arg in args]
|
|
kwargs = {key: arg if not isinstance(arg, BenchmarkColor) else BC_NONE
|
|
for key, arg in kwargs.items()}
|
|
return fmt_str.format(*args, **kwargs)
|
|
|
|
|
|
def find_longest_name(benchmark_list):
|
|
"""
|
|
Return the length of the longest benchmark name in a given list of
|
|
benchmark JSON objects
|
|
"""
|
|
longest_name = 1
|
|
for bc in benchmark_list:
|
|
if len(bc['name']) > longest_name:
|
|
longest_name = len(bc['name'])
|
|
return longest_name
|
|
|
|
|
|
def calculate_change(old_val, new_val):
|
|
"""
|
|
Return a float representing the decimal change between old_val and new_val.
|
|
"""
|
|
if old_val == 0 and new_val == 0:
|
|
return 0.0
|
|
if old_val == 0:
|
|
return float(new_val - old_val) / (float(old_val + new_val) / 2)
|
|
return float(new_val - old_val) / abs(old_val)
|
|
|
|
|
|
def filter_benchmark(json_orig, family, replacement=""):
|
|
"""
|
|
Apply a filter to the json, and only leave the 'family' of benchmarks.
|
|
"""
|
|
regex = re.compile(family)
|
|
filtered = {}
|
|
filtered['benchmarks'] = []
|
|
for be in json_orig['benchmarks']:
|
|
if not regex.search(be['name']):
|
|
continue
|
|
filteredbench = copy.deepcopy(be) # Do NOT modify the old name!
|
|
filteredbench['name'] = regex.sub(replacement, filteredbench['name'])
|
|
filtered['benchmarks'].append(filteredbench)
|
|
return filtered
|
|
|
|
|
|
def get_unique_benchmark_names(json):
|
|
"""
|
|
While *keeping* the order, give all the unique 'names' used for benchmarks.
|
|
"""
|
|
seen = set()
|
|
uniqued = [x['name'] for x in json['benchmarks']
|
|
if x['name'] not in seen and
|
|
(seen.add(x['name']) or True)]
|
|
return uniqued
|
|
|
|
|
|
def intersect(list1, list2):
|
|
"""
|
|
Given two lists, get a new list consisting of the elements only contained
|
|
in *both of the input lists*, while preserving the ordering.
|
|
"""
|
|
return [x for x in list1 if x in list2]
|
|
|
|
|
|
def is_potentially_comparable_benchmark(x):
|
|
return ('time_unit' in x and 'real_time' in x and 'cpu_time' in x)
|
|
|
|
|
|
def partition_benchmarks(json1, json2):
|
|
"""
|
|
While preserving the ordering, find benchmarks with the same names in
|
|
both of the inputs, and group them.
|
|
(i.e. partition/filter into groups with common name)
|
|
"""
|
|
json1_unique_names = get_unique_benchmark_names(json1)
|
|
json2_unique_names = get_unique_benchmark_names(json2)
|
|
names = intersect(json1_unique_names, json2_unique_names)
|
|
partitions = []
|
|
for name in names:
|
|
time_unit = None
|
|
# Pick the time unit from the first entry of the lhs benchmark.
|
|
# We should be careful not to crash with unexpected input.
|
|
for x in json1['benchmarks']:
|
|
if (x['name'] == name and is_potentially_comparable_benchmark(x)):
|
|
time_unit = x['time_unit']
|
|
break
|
|
if time_unit is None:
|
|
continue
|
|
# Filter by name and time unit.
|
|
# All the repetitions are assumed to be comparable.
|
|
lhs = [x for x in json1['benchmarks'] if x['name'] == name and
|
|
x['time_unit'] == time_unit]
|
|
rhs = [x for x in json2['benchmarks'] if x['name'] == name and
|
|
x['time_unit'] == time_unit]
|
|
partitions.append([lhs, rhs])
|
|
return partitions
|
|
|
|
|
|
def get_timedelta_field_as_seconds(benchmark, field_name):
|
|
"""
|
|
Get value of field_name field of benchmark, which is time with time unit
|
|
time_unit, as time in seconds.
|
|
"""
|
|
time_unit = benchmark['time_unit'] if 'time_unit' in benchmark else 's'
|
|
dt = Timedelta(benchmark[field_name], time_unit)
|
|
return dt / Timedelta(1, 's')
|
|
|
|
|
|
def calculate_geomean(json):
|
|
"""
|
|
Extract all real/cpu times from all the benchmarks as seconds,
|
|
and calculate their geomean.
|
|
"""
|
|
times = []
|
|
for benchmark in json['benchmarks']:
|
|
if 'run_type' in benchmark and benchmark['run_type'] == 'aggregate':
|
|
continue
|
|
times.append([get_timedelta_field_as_seconds(benchmark, 'real_time'),
|
|
get_timedelta_field_as_seconds(benchmark, 'cpu_time')])
|
|
return gmean(times) if times else array([])
|
|
|
|
|
|
def extract_field(partition, field_name):
|
|
# The count of elements may be different. We want *all* of them.
|
|
lhs = [x[field_name] for x in partition[0]]
|
|
rhs = [x[field_name] for x in partition[1]]
|
|
return [lhs, rhs]
|
|
|
|
|
|
def calc_utest(timings_cpu, timings_time):
|
|
min_rep_cnt = min(len(timings_time[0]),
|
|
len(timings_time[1]),
|
|
len(timings_cpu[0]),
|
|
len(timings_cpu[1]))
|
|
|
|
# Does *everything* has at least UTEST_MIN_REPETITIONS repetitions?
|
|
if min_rep_cnt < UTEST_MIN_REPETITIONS:
|
|
return False, None, None
|
|
|
|
time_pvalue = mannwhitneyu(
|
|
timings_time[0], timings_time[1], alternative='two-sided').pvalue
|
|
cpu_pvalue = mannwhitneyu(
|
|
timings_cpu[0], timings_cpu[1], alternative='two-sided').pvalue
|
|
|
|
return (min_rep_cnt >= UTEST_OPTIMAL_REPETITIONS), cpu_pvalue, time_pvalue
|
|
|
|
|
|
def print_utest(bc_name, utest, utest_alpha, first_col_width, use_color=True):
|
|
def get_utest_color(pval):
|
|
return BC_FAIL if pval >= utest_alpha else BC_OKGREEN
|
|
|
|
# Check if we failed miserably with minimum required repetitions for utest
|
|
if not utest['have_optimal_repetitions'] and utest['cpu_pvalue'] is None and utest['time_pvalue'] is None:
|
|
return []
|
|
|
|
dsc = "U Test, Repetitions: {} vs {}".format(
|
|
utest['nr_of_repetitions'], utest['nr_of_repetitions_other'])
|
|
dsc_color = BC_OKGREEN
|
|
|
|
# We still got some results to show but issue a warning about it.
|
|
if not utest['have_optimal_repetitions']:
|
|
dsc_color = BC_WARNING
|
|
dsc += ". WARNING: Results unreliable! {}+ repetitions recommended.".format(
|
|
UTEST_OPTIMAL_REPETITIONS)
|
|
|
|
special_str = "{}{:<{}s}{endc}{}{:16.4f}{endc}{}{:16.4f}{endc}{} {}"
|
|
|
|
return [color_format(use_color,
|
|
special_str,
|
|
BC_HEADER,
|
|
"{}{}".format(bc_name, UTEST_COL_NAME),
|
|
first_col_width,
|
|
get_utest_color(
|
|
utest['time_pvalue']), utest['time_pvalue'],
|
|
get_utest_color(
|
|
utest['cpu_pvalue']), utest['cpu_pvalue'],
|
|
dsc_color, dsc,
|
|
endc=BC_ENDC)]
|
|
|
|
|
|
def get_difference_report(
|
|
json1,
|
|
json2,
|
|
utest=False):
|
|
"""
|
|
Calculate and report the difference between each test of two benchmarks
|
|
runs specified as 'json1' and 'json2'. Output is another json containing
|
|
relevant details for each test run.
|
|
"""
|
|
assert utest is True or utest is False
|
|
|
|
diff_report = []
|
|
partitions = partition_benchmarks(json1, json2)
|
|
for partition in partitions:
|
|
benchmark_name = partition[0][0]['name']
|
|
time_unit = partition[0][0]['time_unit']
|
|
measurements = []
|
|
utest_results = {}
|
|
# Careful, we may have different repetition count.
|
|
for i in range(min(len(partition[0]), len(partition[1]))):
|
|
bn = partition[0][i]
|
|
other_bench = partition[1][i]
|
|
measurements.append({
|
|
'real_time': bn['real_time'],
|
|
'cpu_time': bn['cpu_time'],
|
|
'real_time_other': other_bench['real_time'],
|
|
'cpu_time_other': other_bench['cpu_time'],
|
|
'time': calculate_change(bn['real_time'], other_bench['real_time']),
|
|
'cpu': calculate_change(bn['cpu_time'], other_bench['cpu_time'])
|
|
})
|
|
|
|
# After processing the whole partition, if requested, do the U test.
|
|
if utest:
|
|
timings_cpu = extract_field(partition, 'cpu_time')
|
|
timings_time = extract_field(partition, 'real_time')
|
|
have_optimal_repetitions, cpu_pvalue, time_pvalue = calc_utest(
|
|
timings_cpu, timings_time)
|
|
if cpu_pvalue and time_pvalue:
|
|
utest_results = {
|
|
'have_optimal_repetitions': have_optimal_repetitions,
|
|
'cpu_pvalue': cpu_pvalue,
|
|
'time_pvalue': time_pvalue,
|
|
'nr_of_repetitions': len(timings_cpu[0]),
|
|
'nr_of_repetitions_other': len(timings_cpu[1])
|
|
}
|
|
|
|
# Store only if we had any measurements for given benchmark.
|
|
# E.g. partition_benchmarks will filter out the benchmarks having
|
|
# time units which are not compatible with other time units in the
|
|
# benchmark suite.
|
|
if measurements:
|
|
run_type = partition[0][0]['run_type'] if 'run_type' in partition[0][0] else ''
|
|
aggregate_name = partition[0][0]['aggregate_name'] if run_type == 'aggregate' and 'aggregate_name' in partition[0][0] else ''
|
|
diff_report.append({
|
|
'name': benchmark_name,
|
|
'measurements': measurements,
|
|
'time_unit': time_unit,
|
|
'run_type': run_type,
|
|
'aggregate_name': aggregate_name,
|
|
'utest': utest_results
|
|
})
|
|
|
|
lhs_gmean = calculate_geomean(json1)
|
|
rhs_gmean = calculate_geomean(json2)
|
|
if lhs_gmean.any() and rhs_gmean.any():
|
|
diff_report.append({
|
|
'name': 'OVERALL_GEOMEAN',
|
|
'measurements': [{
|
|
'real_time': lhs_gmean[0],
|
|
'cpu_time': lhs_gmean[1],
|
|
'real_time_other': rhs_gmean[0],
|
|
'cpu_time_other': rhs_gmean[1],
|
|
'time': calculate_change(lhs_gmean[0], rhs_gmean[0]),
|
|
'cpu': calculate_change(lhs_gmean[1], rhs_gmean[1])
|
|
}],
|
|
'time_unit': 's',
|
|
'run_type': 'aggregate',
|
|
'aggregate_name': 'geomean',
|
|
'utest': {}
|
|
})
|
|
|
|
return diff_report
|
|
|
|
|
|
def print_difference_report(
|
|
json_diff_report,
|
|
include_aggregates_only=False,
|
|
utest=False,
|
|
utest_alpha=0.05,
|
|
use_color=True):
|
|
"""
|
|
Calculate and report the difference between each test of two benchmarks
|
|
runs specified as 'json1' and 'json2'.
|
|
"""
|
|
assert utest is True or utest is False
|
|
|
|
def get_color(res):
|
|
if res > 0.05:
|
|
return BC_FAIL
|
|
elif res > -0.07:
|
|
return BC_WHITE
|
|
else:
|
|
return BC_CYAN
|
|
|
|
first_col_width = find_longest_name(json_diff_report)
|
|
first_col_width = max(
|
|
first_col_width,
|
|
len('Benchmark'))
|
|
first_col_width += len(UTEST_COL_NAME)
|
|
first_line = "{:<{}s}Time CPU Time Old Time New CPU Old CPU New".format(
|
|
'Benchmark', 12 + first_col_width)
|
|
output_strs = [first_line, '-' * len(first_line)]
|
|
|
|
fmt_str = "{}{:<{}s}{endc}{}{:+16.4f}{endc}{}{:+16.4f}{endc}{:14.0f}{:14.0f}{endc}{:14.0f}{:14.0f}"
|
|
for benchmark in json_diff_report:
|
|
# *If* we were asked to only include aggregates,
|
|
# and if it is non-aggregate, then don't print it.
|
|
if not include_aggregates_only or not 'run_type' in benchmark or benchmark['run_type'] == 'aggregate':
|
|
for measurement in benchmark['measurements']:
|
|
output_strs += [color_format(use_color,
|
|
fmt_str,
|
|
BC_HEADER,
|
|
benchmark['name'],
|
|
first_col_width,
|
|
get_color(measurement['time']),
|
|
measurement['time'],
|
|
get_color(measurement['cpu']),
|
|
measurement['cpu'],
|
|
measurement['real_time'],
|
|
measurement['real_time_other'],
|
|
measurement['cpu_time'],
|
|
measurement['cpu_time_other'],
|
|
endc=BC_ENDC)]
|
|
|
|
# After processing the measurements, if requested and
|
|
# if applicable (e.g. u-test exists for given benchmark),
|
|
# print the U test.
|
|
if utest and benchmark['utest']:
|
|
output_strs += print_utest(benchmark['name'],
|
|
benchmark['utest'],
|
|
utest_alpha=utest_alpha,
|
|
first_col_width=first_col_width,
|
|
use_color=use_color)
|
|
|
|
return output_strs
|
|
|
|
|
|
###############################################################################
|
|
# Unit tests
|
|
|
|
|
|
class TestGetUniqueBenchmarkNames(unittest.TestCase):
|
|
def load_results(self):
|
|
import json
|
|
testInputs = os.path.join(
|
|
os.path.dirname(
|
|
os.path.realpath(__file__)),
|
|
'Inputs')
|
|
testOutput = os.path.join(testInputs, 'test3_run0.json')
|
|
with open(testOutput, 'r') as f:
|
|
json = json.load(f)
|
|
return json
|
|
|
|
def test_basic(self):
|
|
expect_lines = [
|
|
'BM_One',
|
|
'BM_Two',
|
|
'short', # These two are not sorted
|
|
'medium', # These two are not sorted
|
|
]
|
|
json = self.load_results()
|
|
output_lines = get_unique_benchmark_names(json)
|
|
print("\n")
|
|
print("\n".join(output_lines))
|
|
self.assertEqual(len(output_lines), len(expect_lines))
|
|
for i in range(0, len(output_lines)):
|
|
self.assertEqual(expect_lines[i], output_lines[i])
|
|
|
|
|
|
class TestReportDifference(unittest.TestCase):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
def load_results():
|
|
import json
|
|
testInputs = os.path.join(
|
|
os.path.dirname(
|
|
os.path.realpath(__file__)),
|
|
'Inputs')
|
|
testOutput1 = os.path.join(testInputs, 'test1_run1.json')
|
|
testOutput2 = os.path.join(testInputs, 'test1_run2.json')
|
|
with open(testOutput1, 'r') as f:
|
|
json1 = json.load(f)
|
|
with open(testOutput2, 'r') as f:
|
|
json2 = json.load(f)
|
|
return json1, json2
|
|
|
|
json1, json2 = load_results()
|
|
cls.json_diff_report = get_difference_report(json1, json2)
|
|
|
|
def test_json_diff_report_pretty_printing(self):
|
|
expect_lines = [
|
|
['BM_SameTimes', '+0.0000', '+0.0000', '10', '10', '10', '10'],
|
|
['BM_2xFaster', '-0.5000', '-0.5000', '50', '25', '50', '25'],
|
|
['BM_2xSlower', '+1.0000', '+1.0000', '50', '100', '50', '100'],
|
|
['BM_1PercentFaster', '-0.0100', '-0.0100', '100', '99', '100', '99'],
|
|
['BM_1PercentSlower', '+0.0100', '+0.0100', '100', '101', '100', '101'],
|
|
['BM_10PercentFaster', '-0.1000', '-0.1000', '100', '90', '100', '90'],
|
|
['BM_10PercentSlower', '+0.1000', '+0.1000', '100', '110', '100', '110'],
|
|
['BM_100xSlower', '+99.0000', '+99.0000',
|
|
'100', '10000', '100', '10000'],
|
|
['BM_100xFaster', '-0.9900', '-0.9900',
|
|
'10000', '100', '10000', '100'],
|
|
['BM_10PercentCPUToTime', '+0.1000',
|
|
'-0.1000', '100', '110', '100', '90'],
|
|
['BM_ThirdFaster', '-0.3333', '-0.3334', '100', '67', '100', '67'],
|
|
['BM_NotBadTimeUnit', '-0.9000', '+0.2000', '0', '0', '0', '1'],
|
|
['OVERALL_GEOMEAN', '-0.8344', '-0.8026', '0', '0', '0', '0']
|
|
]
|
|
output_lines_with_header = print_difference_report(
|
|
self.json_diff_report, use_color=False)
|
|
output_lines = output_lines_with_header[2:]
|
|
print("\n")
|
|
print("\n".join(output_lines_with_header))
|
|
self.assertEqual(len(output_lines), len(expect_lines))
|
|
for i in range(0, len(output_lines)):
|
|
parts = [x for x in output_lines[i].split(' ') if x]
|
|
self.assertEqual(len(parts), 7)
|
|
self.assertEqual(expect_lines[i], parts)
|
|
|
|
def test_json_diff_report_output(self):
|
|
expected_output = [
|
|
{
|
|
'name': 'BM_SameTimes',
|
|
'measurements': [{'time': 0.0000, 'cpu': 0.0000, 'real_time': 10, 'real_time_other': 10, 'cpu_time': 10, 'cpu_time_other': 10}],
|
|
'time_unit': 'ns',
|
|
'utest': {}
|
|
},
|
|
{
|
|
'name': 'BM_2xFaster',
|
|
'measurements': [{'time': -0.5000, 'cpu': -0.5000, 'real_time': 50, 'real_time_other': 25, 'cpu_time': 50, 'cpu_time_other': 25}],
|
|
'time_unit': 'ns',
|
|
'utest': {}
|
|
},
|
|
{
|
|
'name': 'BM_2xSlower',
|
|
'measurements': [{'time': 1.0000, 'cpu': 1.0000, 'real_time': 50, 'real_time_other': 100, 'cpu_time': 50, 'cpu_time_other': 100}],
|
|
'time_unit': 'ns',
|
|
'utest': {}
|
|
},
|
|
{
|
|
'name': 'BM_1PercentFaster',
|
|
'measurements': [{'time': -0.0100, 'cpu': -0.0100, 'real_time': 100, 'real_time_other': 98.9999999, 'cpu_time': 100, 'cpu_time_other': 98.9999999}],
|
|
'time_unit': 'ns',
|
|
'utest': {}
|
|
},
|
|
{
|
|
'name': 'BM_1PercentSlower',
|
|
'measurements': [{'time': 0.0100, 'cpu': 0.0100, 'real_time': 100, 'real_time_other': 101, 'cpu_time': 100, 'cpu_time_other': 101}],
|
|
'time_unit': 'ns',
|
|
'utest': {}
|
|
},
|
|
{
|
|
'name': 'BM_10PercentFaster',
|
|
'measurements': [{'time': -0.1000, 'cpu': -0.1000, 'real_time': 100, 'real_time_other': 90, 'cpu_time': 100, 'cpu_time_other': 90}],
|
|
'time_unit': 'ns',
|
|
'utest': {}
|
|
},
|
|
{
|
|
'name': 'BM_10PercentSlower',
|
|
'measurements': [{'time': 0.1000, 'cpu': 0.1000, 'real_time': 100, 'real_time_other': 110, 'cpu_time': 100, 'cpu_time_other': 110}],
|
|
'time_unit': 'ns',
|
|
'utest': {}
|
|
},
|
|
{
|
|
'name': 'BM_100xSlower',
|
|
'measurements': [{'time': 99.0000, 'cpu': 99.0000, 'real_time': 100, 'real_time_other': 10000, 'cpu_time': 100, 'cpu_time_other': 10000}],
|
|
'time_unit': 'ns',
|
|
'utest': {}
|
|
},
|
|
{
|
|
'name': 'BM_100xFaster',
|
|
'measurements': [{'time': -0.9900, 'cpu': -0.9900, 'real_time': 10000, 'real_time_other': 100, 'cpu_time': 10000, 'cpu_time_other': 100}],
|
|
'time_unit': 'ns',
|
|
'utest': {}
|
|
},
|
|
{
|
|
'name': 'BM_10PercentCPUToTime',
|
|
'measurements': [{'time': 0.1000, 'cpu': -0.1000, 'real_time': 100, 'real_time_other': 110, 'cpu_time': 100, 'cpu_time_other': 90}],
|
|
'time_unit': 'ns',
|
|
'utest': {}
|
|
},
|
|
{
|
|
'name': 'BM_ThirdFaster',
|
|
'measurements': [{'time': -0.3333, 'cpu': -0.3334, 'real_time': 100, 'real_time_other': 67, 'cpu_time': 100, 'cpu_time_other': 67}],
|
|
'time_unit': 'ns',
|
|
'utest': {}
|
|
},
|
|
{
|
|
'name': 'BM_NotBadTimeUnit',
|
|
'measurements': [{'time': -0.9000, 'cpu': 0.2000, 'real_time': 0.4, 'real_time_other': 0.04, 'cpu_time': 0.5, 'cpu_time_other': 0.6}],
|
|
'time_unit': 's',
|
|
'utest': {}
|
|
},
|
|
{
|
|
'name': 'OVERALL_GEOMEAN',
|
|
'measurements': [{'real_time': 1.193776641714438e-06, 'cpu_time': 1.2144445585302297e-06,
|
|
'real_time_other': 1.9768988699420897e-07, 'cpu_time_other': 2.397447755209533e-07,
|
|
'time': -0.834399601997324, 'cpu': -0.8025889499549471}],
|
|
'time_unit': 's',
|
|
'run_type': 'aggregate',
|
|
'aggregate_name': 'geomean', 'utest': {}
|
|
},
|
|
]
|
|
self.assertEqual(len(self.json_diff_report), len(expected_output))
|
|
for out, expected in zip(
|
|
self.json_diff_report, expected_output):
|
|
self.assertEqual(out['name'], expected['name'])
|
|
self.assertEqual(out['time_unit'], expected['time_unit'])
|
|
assert_utest(self, out, expected)
|
|
assert_measurements(self, out, expected)
|
|
|
|
|
|
class TestReportDifferenceBetweenFamilies(unittest.TestCase):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
def load_result():
|
|
import json
|
|
testInputs = os.path.join(
|
|
os.path.dirname(
|
|
os.path.realpath(__file__)),
|
|
'Inputs')
|
|
testOutput = os.path.join(testInputs, 'test2_run.json')
|
|
with open(testOutput, 'r') as f:
|
|
json = json.load(f)
|
|
return json
|
|
|
|
json = load_result()
|
|
json1 = filter_benchmark(json, "BM_Z.ro", ".")
|
|
json2 = filter_benchmark(json, "BM_O.e", ".")
|
|
cls.json_diff_report = get_difference_report(json1, json2)
|
|
|
|
def test_json_diff_report_pretty_printing(self):
|
|
expect_lines = [
|
|
['.', '-0.5000', '-0.5000', '10', '5', '10', '5'],
|
|
['./4', '-0.5000', '-0.5000', '40', '20', '40', '20'],
|
|
['Prefix/.', '-0.5000', '-0.5000', '20', '10', '20', '10'],
|
|
['Prefix/./3', '-0.5000', '-0.5000', '30', '15', '30', '15'],
|
|
['OVERALL_GEOMEAN', '-0.5000', '-0.5000', '0', '0', '0', '0']
|
|
]
|
|
output_lines_with_header = print_difference_report(
|
|
self.json_diff_report, use_color=False)
|
|
output_lines = output_lines_with_header[2:]
|
|
print("\n")
|
|
print("\n".join(output_lines_with_header))
|
|
self.assertEqual(len(output_lines), len(expect_lines))
|
|
for i in range(0, len(output_lines)):
|
|
parts = [x for x in output_lines[i].split(' ') if x]
|
|
self.assertEqual(len(parts), 7)
|
|
self.assertEqual(expect_lines[i], parts)
|
|
|
|
def test_json_diff_report(self):
|
|
expected_output = [
|
|
{
|
|
'name': u'.',
|
|
'measurements': [{'time': -0.5, 'cpu': -0.5, 'real_time': 10, 'real_time_other': 5, 'cpu_time': 10, 'cpu_time_other': 5}],
|
|
'time_unit': 'ns',
|
|
'utest': {}
|
|
},
|
|
{
|
|
'name': u'./4',
|
|
'measurements': [{'time': -0.5, 'cpu': -0.5, 'real_time': 40, 'real_time_other': 20, 'cpu_time': 40, 'cpu_time_other': 20}],
|
|
'time_unit': 'ns',
|
|
'utest': {},
|
|
},
|
|
{
|
|
'name': u'Prefix/.',
|
|
'measurements': [{'time': -0.5, 'cpu': -0.5, 'real_time': 20, 'real_time_other': 10, 'cpu_time': 20, 'cpu_time_other': 10}],
|
|
'time_unit': 'ns',
|
|
'utest': {}
|
|
},
|
|
{
|
|
'name': u'Prefix/./3',
|
|
'measurements': [{'time': -0.5, 'cpu': -0.5, 'real_time': 30, 'real_time_other': 15, 'cpu_time': 30, 'cpu_time_other': 15}],
|
|
'time_unit': 'ns',
|
|
'utest': {}
|
|
},
|
|
{
|
|
'name': 'OVERALL_GEOMEAN',
|
|
'measurements': [{'real_time': 2.213363839400641e-08, 'cpu_time': 2.213363839400641e-08,
|
|
'real_time_other': 1.1066819197003185e-08, 'cpu_time_other': 1.1066819197003185e-08,
|
|
'time': -0.5000000000000009, 'cpu': -0.5000000000000009}],
|
|
'time_unit': 's',
|
|
'run_type': 'aggregate',
|
|
'aggregate_name': 'geomean',
|
|
'utest': {}
|
|
}
|
|
]
|
|
self.assertEqual(len(self.json_diff_report), len(expected_output))
|
|
for out, expected in zip(
|
|
self.json_diff_report, expected_output):
|
|
self.assertEqual(out['name'], expected['name'])
|
|
self.assertEqual(out['time_unit'], expected['time_unit'])
|
|
assert_utest(self, out, expected)
|
|
assert_measurements(self, out, expected)
|
|
|
|
|
|
class TestReportDifferenceWithUTest(unittest.TestCase):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
def load_results():
|
|
import json
|
|
testInputs = os.path.join(
|
|
os.path.dirname(
|
|
os.path.realpath(__file__)),
|
|
'Inputs')
|
|
testOutput1 = os.path.join(testInputs, 'test3_run0.json')
|
|
testOutput2 = os.path.join(testInputs, 'test3_run1.json')
|
|
with open(testOutput1, 'r') as f:
|
|
json1 = json.load(f)
|
|
with open(testOutput2, 'r') as f:
|
|
json2 = json.load(f)
|
|
return json1, json2
|
|
|
|
json1, json2 = load_results()
|
|
cls.json_diff_report = get_difference_report(
|
|
json1, json2, utest=True)
|
|
|
|
def test_json_diff_report_pretty_printing(self):
|
|
expect_lines = [
|
|
['BM_One', '-0.1000', '+0.1000', '10', '9', '100', '110'],
|
|
['BM_Two', '+0.1111', '-0.0111', '9', '10', '90', '89'],
|
|
['BM_Two', '-0.1250', '-0.1628', '8', '7', '86', '72'],
|
|
['BM_Two_pvalue',
|
|
'1.0000',
|
|
'0.6667',
|
|
'U',
|
|
'Test,',
|
|
'Repetitions:',
|
|
'2',
|
|
'vs',
|
|
'2.',
|
|
'WARNING:',
|
|
'Results',
|
|
'unreliable!',
|
|
'9+',
|
|
'repetitions',
|
|
'recommended.'],
|
|
['short', '-0.1250', '-0.0625', '8', '7', '80', '75'],
|
|
['short', '-0.4325', '-0.1351', '8', '5', '77', '67'],
|
|
['short_pvalue',
|
|
'0.7671',
|
|
'0.2000',
|
|
'U',
|
|
'Test,',
|
|
'Repetitions:',
|
|
'2',
|
|
'vs',
|
|
'3.',
|
|
'WARNING:',
|
|
'Results',
|
|
'unreliable!',
|
|
'9+',
|
|
'repetitions',
|
|
'recommended.'],
|
|
['medium', '-0.3750', '-0.3375', '8', '5', '80', '53'],
|
|
['OVERALL_GEOMEAN', '+1.6405', '-0.6985', '0', '0', '0', '0']
|
|
]
|
|
output_lines_with_header = print_difference_report(
|
|
self.json_diff_report, utest=True, utest_alpha=0.05, use_color=False)
|
|
output_lines = output_lines_with_header[2:]
|
|
print("\n")
|
|
print("\n".join(output_lines_with_header))
|
|
self.assertEqual(len(output_lines), len(expect_lines))
|
|
for i in range(0, len(output_lines)):
|
|
parts = [x for x in output_lines[i].split(' ') if x]
|
|
self.assertEqual(expect_lines[i], parts)
|
|
|
|
def test_json_diff_report_pretty_printing_aggregates_only(self):
|
|
expect_lines = [
|
|
['BM_One', '-0.1000', '+0.1000', '10', '9', '100', '110'],
|
|
['BM_Two_pvalue',
|
|
'1.0000',
|
|
'0.6667',
|
|
'U',
|
|
'Test,',
|
|
'Repetitions:',
|
|
'2',
|
|
'vs',
|
|
'2.',
|
|
'WARNING:',
|
|
'Results',
|
|
'unreliable!',
|
|
'9+',
|
|
'repetitions',
|
|
'recommended.'],
|
|
['short', '-0.1250', '-0.0625', '8', '7', '80', '75'],
|
|
['short', '-0.4325', '-0.1351', '8', '5', '77', '67'],
|
|
['short_pvalue',
|
|
'0.7671',
|
|
'0.2000',
|
|
'U',
|
|
'Test,',
|
|
'Repetitions:',
|
|
'2',
|
|
'vs',
|
|
'3.',
|
|
'WARNING:',
|
|
'Results',
|
|
'unreliable!',
|
|
'9+',
|
|
'repetitions',
|
|
'recommended.'],
|
|
['OVERALL_GEOMEAN', '+1.6405', '-0.6985', '0', '0', '0', '0']
|
|
]
|
|
output_lines_with_header = print_difference_report(
|
|
self.json_diff_report, include_aggregates_only=True, utest=True, utest_alpha=0.05, use_color=False)
|
|
output_lines = output_lines_with_header[2:]
|
|
print("\n")
|
|
print("\n".join(output_lines_with_header))
|
|
self.assertEqual(len(output_lines), len(expect_lines))
|
|
for i in range(0, len(output_lines)):
|
|
parts = [x for x in output_lines[i].split(' ') if x]
|
|
self.assertEqual(expect_lines[i], parts)
|
|
|
|
def test_json_diff_report(self):
|
|
expected_output = [
|
|
{
|
|
'name': u'BM_One',
|
|
'measurements': [
|
|
{'time': -0.1,
|
|
'cpu': 0.1,
|
|
'real_time': 10,
|
|
'real_time_other': 9,
|
|
'cpu_time': 100,
|
|
'cpu_time_other': 110}
|
|
],
|
|
'time_unit': 'ns',
|
|
'utest': {}
|
|
},
|
|
{
|
|
'name': u'BM_Two',
|
|
'measurements': [
|
|
{'time': 0.1111111111111111,
|
|
'cpu': -0.011111111111111112,
|
|
'real_time': 9,
|
|
'real_time_other': 10,
|
|
'cpu_time': 90,
|
|
'cpu_time_other': 89},
|
|
{'time': -0.125, 'cpu': -0.16279069767441862, 'real_time': 8,
|
|
'real_time_other': 7, 'cpu_time': 86, 'cpu_time_other': 72}
|
|
],
|
|
'time_unit': 'ns',
|
|
'utest': {
|
|
'have_optimal_repetitions': False, 'cpu_pvalue': 0.6666666666666666, 'time_pvalue': 1.0
|
|
}
|
|
},
|
|
{
|
|
'name': u'short',
|
|
'measurements': [
|
|
{'time': -0.125,
|
|
'cpu': -0.0625,
|
|
'real_time': 8,
|
|
'real_time_other': 7,
|
|
'cpu_time': 80,
|
|
'cpu_time_other': 75},
|
|
{'time': -0.4325,
|
|
'cpu': -0.13506493506493514,
|
|
'real_time': 8,
|
|
'real_time_other': 4.54,
|
|
'cpu_time': 77,
|
|
'cpu_time_other': 66.6}
|
|
],
|
|
'time_unit': 'ns',
|
|
'utest': {
|
|
'have_optimal_repetitions': False, 'cpu_pvalue': 0.2, 'time_pvalue': 0.7670968684102772
|
|
}
|
|
},
|
|
{
|
|
'name': u'medium',
|
|
'measurements': [
|
|
{'time': -0.375,
|
|
'cpu': -0.3375,
|
|
'real_time': 8,
|
|
'real_time_other': 5,
|
|
'cpu_time': 80,
|
|
'cpu_time_other': 53}
|
|
],
|
|
'time_unit': 'ns',
|
|
'utest': {}
|
|
},
|
|
{
|
|
'name': 'OVERALL_GEOMEAN',
|
|
'measurements': [{'real_time': 8.48528137423858e-09, 'cpu_time': 8.441336246629233e-08,
|
|
'real_time_other': 2.2405267593145244e-08, 'cpu_time_other': 2.5453661413660466e-08,
|
|
'time': 1.6404861082353634, 'cpu': -0.6984640740519662}],
|
|
'time_unit': 's',
|
|
'run_type': 'aggregate',
|
|
'aggregate_name': 'geomean',
|
|
'utest': {}
|
|
}
|
|
]
|
|
self.assertEqual(len(self.json_diff_report), len(expected_output))
|
|
for out, expected in zip(
|
|
self.json_diff_report, expected_output):
|
|
self.assertEqual(out['name'], expected['name'])
|
|
self.assertEqual(out['time_unit'], expected['time_unit'])
|
|
assert_utest(self, out, expected)
|
|
assert_measurements(self, out, expected)
|
|
|
|
|
|
class TestReportDifferenceWithUTestWhileDisplayingAggregatesOnly(
|
|
unittest.TestCase):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
def load_results():
|
|
import json
|
|
testInputs = os.path.join(
|
|
os.path.dirname(
|
|
os.path.realpath(__file__)),
|
|
'Inputs')
|
|
testOutput1 = os.path.join(testInputs, 'test3_run0.json')
|
|
testOutput2 = os.path.join(testInputs, 'test3_run1.json')
|
|
with open(testOutput1, 'r') as f:
|
|
json1 = json.load(f)
|
|
with open(testOutput2, 'r') as f:
|
|
json2 = json.load(f)
|
|
return json1, json2
|
|
|
|
json1, json2 = load_results()
|
|
cls.json_diff_report = get_difference_report(
|
|
json1, json2, utest=True)
|
|
|
|
def test_json_diff_report_pretty_printing(self):
|
|
expect_lines = [
|
|
['BM_One', '-0.1000', '+0.1000', '10', '9', '100', '110'],
|
|
['BM_Two', '+0.1111', '-0.0111', '9', '10', '90', '89'],
|
|
['BM_Two', '-0.1250', '-0.1628', '8', '7', '86', '72'],
|
|
['BM_Two_pvalue',
|
|
'1.0000',
|
|
'0.6667',
|
|
'U',
|
|
'Test,',
|
|
'Repetitions:',
|
|
'2',
|
|
'vs',
|
|
'2.',
|
|
'WARNING:',
|
|
'Results',
|
|
'unreliable!',
|
|
'9+',
|
|
'repetitions',
|
|
'recommended.'],
|
|
['short', '-0.1250', '-0.0625', '8', '7', '80', '75'],
|
|
['short', '-0.4325', '-0.1351', '8', '5', '77', '67'],
|
|
['short_pvalue',
|
|
'0.7671',
|
|
'0.2000',
|
|
'U',
|
|
'Test,',
|
|
'Repetitions:',
|
|
'2',
|
|
'vs',
|
|
'3.',
|
|
'WARNING:',
|
|
'Results',
|
|
'unreliable!',
|
|
'9+',
|
|
'repetitions',
|
|
'recommended.'],
|
|
['medium', '-0.3750', '-0.3375', '8', '5', '80', '53'],
|
|
['OVERALL_GEOMEAN', '+1.6405', '-0.6985', '0', '0', '0', '0']
|
|
]
|
|
output_lines_with_header = print_difference_report(
|
|
self.json_diff_report,
|
|
utest=True, utest_alpha=0.05, use_color=False)
|
|
output_lines = output_lines_with_header[2:]
|
|
print("\n")
|
|
print("\n".join(output_lines_with_header))
|
|
self.assertEqual(len(output_lines), len(expect_lines))
|
|
for i in range(0, len(output_lines)):
|
|
parts = [x for x in output_lines[i].split(' ') if x]
|
|
self.assertEqual(expect_lines[i], parts)
|
|
|
|
def test_json_diff_report(self):
|
|
expected_output = [
|
|
{
|
|
'name': u'BM_One',
|
|
'measurements': [
|
|
{'time': -0.1,
|
|
'cpu': 0.1,
|
|
'real_time': 10,
|
|
'real_time_other': 9,
|
|
'cpu_time': 100,
|
|
'cpu_time_other': 110}
|
|
],
|
|
'time_unit': 'ns',
|
|
'utest': {}
|
|
},
|
|
{
|
|
'name': u'BM_Two',
|
|
'measurements': [
|
|
{'time': 0.1111111111111111,
|
|
'cpu': -0.011111111111111112,
|
|
'real_time': 9,
|
|
'real_time_other': 10,
|
|
'cpu_time': 90,
|
|
'cpu_time_other': 89},
|
|
{'time': -0.125, 'cpu': -0.16279069767441862, 'real_time': 8,
|
|
'real_time_other': 7, 'cpu_time': 86, 'cpu_time_other': 72}
|
|
],
|
|
'time_unit': 'ns',
|
|
'utest': {
|
|
'have_optimal_repetitions': False, 'cpu_pvalue': 0.6666666666666666, 'time_pvalue': 1.0
|
|
}
|
|
},
|
|
{
|
|
'name': u'short',
|
|
'measurements': [
|
|
{'time': -0.125,
|
|
'cpu': -0.0625,
|
|
'real_time': 8,
|
|
'real_time_other': 7,
|
|
'cpu_time': 80,
|
|
'cpu_time_other': 75},
|
|
{'time': -0.4325,
|
|
'cpu': -0.13506493506493514,
|
|
'real_time': 8,
|
|
'real_time_other': 4.54,
|
|
'cpu_time': 77,
|
|
'cpu_time_other': 66.6}
|
|
],
|
|
'time_unit': 'ns',
|
|
'utest': {
|
|
'have_optimal_repetitions': False, 'cpu_pvalue': 0.2, 'time_pvalue': 0.7670968684102772
|
|
}
|
|
},
|
|
{
|
|
'name': u'medium',
|
|
'measurements': [
|
|
{'real_time_other': 5,
|
|
'cpu_time': 80,
|
|
'time': -0.375,
|
|
'real_time': 8,
|
|
'cpu_time_other': 53,
|
|
'cpu': -0.3375
|
|
}
|
|
],
|
|
'utest': {},
|
|
'time_unit': u'ns',
|
|
'aggregate_name': ''
|
|
},
|
|
{
|
|
'name': 'OVERALL_GEOMEAN',
|
|
'measurements': [{'real_time': 8.48528137423858e-09, 'cpu_time': 8.441336246629233e-08,
|
|
'real_time_other': 2.2405267593145244e-08, 'cpu_time_other': 2.5453661413660466e-08,
|
|
'time': 1.6404861082353634, 'cpu': -0.6984640740519662}],
|
|
'time_unit': 's',
|
|
'run_type': 'aggregate',
|
|
'aggregate_name': 'geomean',
|
|
'utest': {}
|
|
}
|
|
]
|
|
self.assertEqual(len(self.json_diff_report), len(expected_output))
|
|
for out, expected in zip(
|
|
self.json_diff_report, expected_output):
|
|
self.assertEqual(out['name'], expected['name'])
|
|
self.assertEqual(out['time_unit'], expected['time_unit'])
|
|
assert_utest(self, out, expected)
|
|
assert_measurements(self, out, expected)
|
|
|
|
|
|
class TestReportDifferenceForPercentageAggregates(
|
|
unittest.TestCase):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
def load_results():
|
|
import json
|
|
testInputs = os.path.join(
|
|
os.path.dirname(
|
|
os.path.realpath(__file__)),
|
|
'Inputs')
|
|
testOutput1 = os.path.join(testInputs, 'test4_run0.json')
|
|
testOutput2 = os.path.join(testInputs, 'test4_run1.json')
|
|
with open(testOutput1, 'r') as f:
|
|
json1 = json.load(f)
|
|
with open(testOutput2, 'r') as f:
|
|
json2 = json.load(f)
|
|
return json1, json2
|
|
|
|
json1, json2 = load_results()
|
|
cls.json_diff_report = get_difference_report(
|
|
json1, json2, utest=True)
|
|
|
|
def test_json_diff_report_pretty_printing(self):
|
|
expect_lines = [
|
|
['whocares', '-0.5000', '+0.5000', '0', '0', '0', '0']
|
|
]
|
|
output_lines_with_header = print_difference_report(
|
|
self.json_diff_report,
|
|
utest=True, utest_alpha=0.05, use_color=False)
|
|
output_lines = output_lines_with_header[2:]
|
|
print("\n")
|
|
print("\n".join(output_lines_with_header))
|
|
self.assertEqual(len(output_lines), len(expect_lines))
|
|
for i in range(0, len(output_lines)):
|
|
parts = [x for x in output_lines[i].split(' ') if x]
|
|
self.assertEqual(expect_lines[i], parts)
|
|
|
|
def test_json_diff_report(self):
|
|
expected_output = [
|
|
{
|
|
'name': u'whocares',
|
|
'measurements': [
|
|
{'time': -0.5,
|
|
'cpu': 0.5,
|
|
'real_time': 0.01,
|
|
'real_time_other': 0.005,
|
|
'cpu_time': 0.10,
|
|
'cpu_time_other': 0.15}
|
|
],
|
|
'time_unit': 'ns',
|
|
'utest': {}
|
|
}
|
|
]
|
|
self.assertEqual(len(self.json_diff_report), len(expected_output))
|
|
for out, expected in zip(
|
|
self.json_diff_report, expected_output):
|
|
self.assertEqual(out['name'], expected['name'])
|
|
self.assertEqual(out['time_unit'], expected['time_unit'])
|
|
assert_utest(self, out, expected)
|
|
assert_measurements(self, out, expected)
|
|
|
|
|
|
class TestReportSorting(unittest.TestCase):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
def load_result():
|
|
import json
|
|
testInputs = os.path.join(
|
|
os.path.dirname(
|
|
os.path.realpath(__file__)),
|
|
'Inputs')
|
|
testOutput = os.path.join(testInputs, 'test4_run.json')
|
|
with open(testOutput, 'r') as f:
|
|
json = json.load(f)
|
|
return json
|
|
|
|
cls.json = load_result()
|
|
|
|
def test_json_diff_report_pretty_printing(self):
|
|
import util
|
|
|
|
expected_names = [
|
|
"99 family 0 instance 0 repetition 0",
|
|
"98 family 0 instance 0 repetition 1",
|
|
"97 family 0 instance 0 aggregate",
|
|
"96 family 0 instance 1 repetition 0",
|
|
"95 family 0 instance 1 repetition 1",
|
|
"94 family 0 instance 1 aggregate",
|
|
"93 family 1 instance 0 repetition 0",
|
|
"92 family 1 instance 0 repetition 1",
|
|
"91 family 1 instance 0 aggregate",
|
|
"90 family 1 instance 1 repetition 0",
|
|
"89 family 1 instance 1 repetition 1",
|
|
"88 family 1 instance 1 aggregate"
|
|
]
|
|
|
|
for n in range(len(self.json['benchmarks']) ** 2):
|
|
random.shuffle(self.json['benchmarks'])
|
|
sorted_benchmarks = util.sort_benchmark_results(self.json)[
|
|
'benchmarks']
|
|
self.assertEqual(len(expected_names), len(sorted_benchmarks))
|
|
for out, expected in zip(sorted_benchmarks, expected_names):
|
|
self.assertEqual(out['name'], expected)
|
|
|
|
|
|
def assert_utest(unittest_instance, lhs, rhs):
|
|
if lhs['utest']:
|
|
unittest_instance.assertAlmostEqual(
|
|
lhs['utest']['cpu_pvalue'],
|
|
rhs['utest']['cpu_pvalue'])
|
|
unittest_instance.assertAlmostEqual(
|
|
lhs['utest']['time_pvalue'],
|
|
rhs['utest']['time_pvalue'])
|
|
unittest_instance.assertEqual(
|
|
lhs['utest']['have_optimal_repetitions'],
|
|
rhs['utest']['have_optimal_repetitions'])
|
|
else:
|
|
# lhs is empty. assert if rhs is not.
|
|
unittest_instance.assertEqual(lhs['utest'], rhs['utest'])
|
|
|
|
|
|
def assert_measurements(unittest_instance, lhs, rhs):
|
|
for m1, m2 in zip(lhs['measurements'], rhs['measurements']):
|
|
unittest_instance.assertEqual(m1['real_time'], m2['real_time'])
|
|
unittest_instance.assertEqual(m1['cpu_time'], m2['cpu_time'])
|
|
# m1['time'] and m1['cpu'] hold values which are being calculated,
|
|
# and therefore we must use almost-equal pattern.
|
|
unittest_instance.assertAlmostEqual(m1['time'], m2['time'], places=4)
|
|
unittest_instance.assertAlmostEqual(m1['cpu'], m2['cpu'], places=4)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|
|
|
|
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
|
|
# kate: tab-width: 4; replace-tabs on; indent-width 4; tab-indents: off;
|
|
# kate: indent-mode python; remove-trailing-spaces modified;
|