benchmark/src/reporter.cc
2016-05-23 20:12:54 +02:00

169 lines
5.8 KiB
C++

// Copyright 2015 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "benchmark/reporter.h"
#include "minimal_leastsq.h"
#include <cstdlib>
#include <vector>
#include <tuple>
#include "check.h"
#include "stat.h"
namespace benchmark {
void BenchmarkReporter::ComputeStats(
const std::vector<Run>& reports,
Run* mean_data, Run* stddev_data) {
CHECK(reports.size() >= 2) << "Cannot compute stats for less than 2 reports";
// Accumulators.
Stat1_d real_accumulated_time_stat;
Stat1_d cpu_accumulated_time_stat;
Stat1_d bytes_per_second_stat;
Stat1_d items_per_second_stat;
// All repetitions should be run with the same number of iterations so we
// can take this information from the first benchmark.
int64_t const run_iterations = reports.front().iterations;
// Populate the accumulators.
for (Run const& run : reports) {
CHECK_EQ(reports[0].benchmark_name, run.benchmark_name);
CHECK_EQ(run_iterations, run.iterations);
real_accumulated_time_stat +=
Stat1_d(run.real_accumulated_time/run.iterations, run.iterations);
cpu_accumulated_time_stat +=
Stat1_d(run.cpu_accumulated_time/run.iterations, run.iterations);
items_per_second_stat += Stat1_d(run.items_per_second, run.iterations);
bytes_per_second_stat += Stat1_d(run.bytes_per_second, run.iterations);
}
// Get the data from the accumulator to BenchmarkReporter::Run's.
mean_data->benchmark_name = reports[0].benchmark_name + "_mean";
mean_data->iterations = run_iterations;
mean_data->real_accumulated_time = real_accumulated_time_stat.Mean() *
run_iterations;
mean_data->cpu_accumulated_time = cpu_accumulated_time_stat.Mean() *
run_iterations;
mean_data->bytes_per_second = bytes_per_second_stat.Mean();
mean_data->items_per_second = items_per_second_stat.Mean();
// Only add label to mean/stddev if it is same for all runs
mean_data->report_label = reports[0].report_label;
for (std::size_t i = 1; i < reports.size(); i++) {
if (reports[i].report_label != reports[0].report_label) {
mean_data->report_label = "";
break;
}
}
stddev_data->benchmark_name = reports[0].benchmark_name + "_stddev";
stddev_data->report_label = mean_data->report_label;
stddev_data->iterations = 0;
stddev_data->real_accumulated_time =
real_accumulated_time_stat.StdDev();
stddev_data->cpu_accumulated_time =
cpu_accumulated_time_stat.StdDev();
stddev_data->bytes_per_second = bytes_per_second_stat.StdDev();
stddev_data->items_per_second = items_per_second_stat.StdDev();
}
void BenchmarkReporter::ComputeBigO(
const std::vector<Run>& reports,
Run* big_o, Run* rms) {
CHECK(reports.size() >= 2) << "Cannot compute asymptotic complexity for less than 2 reports";
// Accumulators.
std::vector<int> N;
std::vector<double> RealTime;
std::vector<double> CpuTime;
// Populate the accumulators.
for (const Run& run : reports) {
N.push_back(run.arg1);
RealTime.push_back(run.real_accumulated_time/run.iterations);
CpuTime.push_back(run.cpu_accumulated_time/run.iterations);
}
LeastSq resultCpu = MinimalLeastSq(N, CpuTime, reports[0].complexity);
// resultCpu.complexity is passed as parameter to resultReal because in case
// reports[0].complexity is oAuto, the noise on the measured data could make
// the best fit function of Cpu and Real differ. In order to solve this, we take
// the best fitting function for the Cpu, and apply it to Real data.
LeastSq resultReal = MinimalLeastSq(N, RealTime, resultCpu.complexity);
std::string benchmark_name = reports[0].benchmark_name.substr(0, reports[0].benchmark_name.find('/'));
// Get the data from the accumulator to BenchmarkReporter::Run's.
big_o->benchmark_name = benchmark_name + "_BigO";
big_o->iterations = 0;
big_o->real_accumulated_time = resultReal.coef;
big_o->cpu_accumulated_time = resultCpu.coef;
big_o->report_big_o = true;
big_o->complexity = resultCpu.complexity;
double multiplier;
const char* timeLabel;
std::tie(timeLabel, multiplier) = GetTimeUnitAndMultiplier(reports[0].time_unit);
// Only add label to mean/stddev if it is same for all runs
big_o->report_label = reports[0].report_label;
rms->benchmark_name = benchmark_name + "_RMS";
rms->report_label = big_o->report_label;
rms->iterations = 0;
rms->real_accumulated_time = resultReal.rms / multiplier;
rms->cpu_accumulated_time = resultCpu.rms / multiplier;
rms->report_rms = true;
rms->complexity = resultCpu.complexity;
}
std::string BenchmarkReporter::GetBigO(BigO complexity) {
switch (complexity) {
case oN:
return "* N";
case oNSquared:
return "* N**2";
case oNCubed:
return "* N**3";
case oLogN:
return "* lgN";
case oNLogN:
return "* NlgN";
case o1:
return "* 1";
default:
return "";
}
}
TimeUnitMultiplier BenchmarkReporter::GetTimeUnitAndMultiplier(TimeUnit unit) {
switch (unit) {
case kMillisecond:
return std::make_pair("ms", 1e3);
case kMicrosecond:
return std::make_pair("us", 1e6);
case kNanosecond:
default:
return std::make_pair("ns", 1e9);
}
}
void BenchmarkReporter::Finalize() {
}
BenchmarkReporter::~BenchmarkReporter() {
}
} // end namespace benchmark