#include "benchmark/benchmark.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(__GNUC__) # define BENCHMARK_NOINLINE __attribute__((noinline)) #else # define BENCHMARK_NOINLINE #endif namespace { int BENCHMARK_NOINLINE Factorial(uint32_t n) { return (n == 1) ? 1 : n * Factorial(n - 1); } double CalculatePi(int depth) { double pi = 0.0; for (int i = 0; i < depth; ++i) { double numerator = static_cast(((i % 2) * 2) - 1); double denominator = static_cast((2 * i) - 1); pi += numerator / denominator; } return (pi - 1.0) * 4; } std::set ConstructRandomSet(int size) { std::set s; for (int i = 0; i < size; ++i) s.insert(i); return s; } std::mutex test_vector_mu; std::vector* test_vector = nullptr; } // end namespace static void BM_Factorial(benchmark::State& state) { int fac_42 = 0; while (state.KeepRunning()) fac_42 = Factorial(8); // Prevent compiler optimizations std::stringstream ss; ss << fac_42; state.SetLabel(ss.str()); } BENCHMARK(BM_Factorial); BENCHMARK(BM_Factorial)->UseRealTime(); static void BM_CalculatePiRange(benchmark::State& state) { double pi = 0.0; while (state.KeepRunning()) pi = CalculatePi(state.range_x()); std::stringstream ss; ss << pi; state.SetLabel(ss.str()); } BENCHMARK_RANGE(BM_CalculatePiRange, 1, 1024 * 1024); static void BM_CalculatePi(benchmark::State& state) { static const int depth = 1024; while (state.KeepRunning()) { benchmark::DoNotOptimize(CalculatePi(depth)); } } BENCHMARK(BM_CalculatePi)->Threads(8); BENCHMARK(BM_CalculatePi)->ThreadRange(1, 32); BENCHMARK(BM_CalculatePi)->ThreadPerCpu(); static void BM_SetInsert(benchmark::State& state) { while (state.KeepRunning()) { state.PauseTiming(); std::set data = ConstructRandomSet(state.range_x()); state.ResumeTiming(); for (int j = 0; j < state.range_y(); ++j) data.insert(rand()); } state.SetItemsProcessed(state.iterations() * state.range_y()); state.SetBytesProcessed(state.iterations() * state.range_y() * sizeof(int)); } BENCHMARK(BM_SetInsert)->RangePair(1<<10,8<<10, 1,10); template static void BM_Sequential(benchmark::State& state) { ValueType v = 42; while (state.KeepRunning()) { Container c; for (int i = state.range_x(); --i; ) c.push_back(v); } const size_t items_processed = state.iterations() * state.range_x(); state.SetItemsProcessed(items_processed); state.SetBytesProcessed(items_processed * sizeof(v)); } BENCHMARK_TEMPLATE2(BM_Sequential, std::vector, int)->Range(1 << 0, 1 << 10); BENCHMARK_TEMPLATE(BM_Sequential, std::list)->Range(1 << 0, 1 << 10); // Test the variadic version of BENCHMARK_TEMPLATE in C++11 and beyond. #if __cplusplus >= 201103L BENCHMARK_TEMPLATE(BM_Sequential, std::vector, int)->Arg(512); #endif static void BM_StringCompare(benchmark::State& state) { std::string s1(state.range_x(), '-'); std::string s2(state.range_x(), '-'); while (state.KeepRunning()) benchmark::DoNotOptimize(s1.compare(s2)); } BENCHMARK(BM_StringCompare)->Range(1, 1<<20); static void BM_SetupTeardown(benchmark::State& state) { if (state.thread_index == 0) { // No need to lock test_vector_mu here as this is running single-threaded. test_vector = new std::vector(); } int i = 0; while (state.KeepRunning()) { std::lock_guard l(test_vector_mu); if (i%2 == 0) test_vector->push_back(i); else test_vector->pop_back(); ++i; } if (state.thread_index == 0) { delete test_vector; } } BENCHMARK(BM_SetupTeardown)->ThreadPerCpu(); static void BM_LongTest(benchmark::State& state) { double tracker = 0.0; while (state.KeepRunning()) { for (int i = 0; i < state.range_x(); ++i) benchmark::DoNotOptimize(tracker += i); } } BENCHMARK(BM_LongTest)->Range(1<<16,1<<28); static void BM_ParallelMemset(benchmark::State& state) { int size = state.range_x() / sizeof(int); int thread_size = size / state.threads; int from = thread_size * state.thread_index; int to = from + thread_size; if (state.thread_index == 0) { test_vector = new std::vector(size); } while (state.KeepRunning()) { for (int i = from; i < to; i++) { // No need to lock test_vector_mu as ranges // do not overlap between threads. benchmark::DoNotOptimize(test_vector->at(i) = 1); } } if (state.thread_index == 0) { delete test_vector; } } BENCHMARK(BM_ParallelMemset)->Arg(10 << 20)->ThreadRange(1, 4); static void BM_ManualTiming(benchmark::State& state) { size_t slept_for = 0; int microseconds = state.range_x(); std::chrono::duration sleep_duration { static_cast(microseconds) }; while (state.KeepRunning()) { auto start = std::chrono::high_resolution_clock::now(); // Simulate some useful workload with a sleep std::this_thread::sleep_for(sleep_duration); auto end = std::chrono::high_resolution_clock::now(); auto elapsed = std::chrono::duration_cast>( end - start); state.SetIterationTime(elapsed.count()); slept_for += microseconds; } state.SetItemsProcessed(slept_for); } BENCHMARK(BM_ManualTiming)->Range(1, 1 << 14)->UseRealTime(); BENCHMARK(BM_ManualTiming)->Range(1, 1 << 14)->UseManualTime(); BENCHMARK_MAIN()