# Copyright 2020 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Python benchmarking utilities. Example usage: import google_benchmark as benchmark @benchmark.register def my_benchmark(state): ... # Code executed outside `while` loop is not timed. while state: ... # Code executed within `while` loop is timed. if __name__ == '__main__': benchmark.main() """ from absl import app from google_benchmark import _benchmark from google_benchmark._benchmark import ( Counter, kNanosecond, kMicrosecond, kMillisecond, kSecond, oNone, o1, oN, oNSquared, oNCubed, oLogN, oNLogN, oAuto, oLambda, ) __all__ = [ "register", "main", "Counter", "kNanosecond", "kMicrosecond", "kMillisecond", "kSecond", "oNone", "o1", "oN", "oNSquared", "oNCubed", "oLogN", "oNLogN", "oAuto", "oLambda", ] __version__ = "1.6.1" class __OptionMaker: """A stateless class to collect benchmark options. Collect all decorator calls like @option.range(start=0, limit=1<<5). """ class Options: """Pure data class to store options calls, along with the benchmarked function.""" def __init__(self, func): self.func = func self.builder_calls = [] @classmethod def make(cls, func_or_options): """Make Options from Options or the benchmarked function.""" if isinstance(func_or_options, cls.Options): return func_or_options return cls.Options(func_or_options) def __getattr__(self, builder_name): """Append option call in the Options.""" # The function that get returned on @option.range(start=0, limit=1<<5). def __builder_method(*args, **kwargs): # The decorator that get called, either with the benchmared function # or the previous Options def __decorator(func_or_options): options = self.make(func_or_options) options.builder_calls.append((builder_name, args, kwargs)) # The decorator returns Options so it is not technically a decorator # and needs a final call to @regiser return options return __decorator return __builder_method # Alias for nicer API. # We have to instantiate an object, even if stateless, to be able to use __getattr__ # on option.range option = __OptionMaker() def register(undefined=None, *, name=None): """Register function for benchmarking.""" if undefined is None: # Decorator is called without parenthesis so we return a decorator return lambda f: register(f, name=name) # We have either the function to benchmark (simple case) or an instance of Options # (@option._ case). options = __OptionMaker.make(undefined) if name is None: name = options.func.__name__ # We register the benchmark and reproduce all the @option._ calls onto the # benchmark builder pattern benchmark = _benchmark.RegisterBenchmark(name, options.func) for name, args, kwargs in options.builder_calls[::-1]: getattr(benchmark, name)(*args, **kwargs) # return the benchmarked function because the decorator does not modify it return options.func def _flags_parser(argv): argv = _benchmark.Initialize(argv) return app.parse_flags_with_usage(argv) def _run_benchmarks(argv): if len(argv) > 1: raise app.UsageError("Too many command-line arguments.") return _benchmark.RunSpecifiedBenchmarks() def main(argv=None): return app.run(_run_benchmarks, argv=argv, flags_parser=_flags_parser) # Methods for use with custom main function. initialize = _benchmark.Initialize run_benchmarks = _benchmark.RunSpecifiedBenchmarks