https://github.com/google/benchmark/pull/801 is stuck with some cryptic cmake failure due to
some linking issue between googletest and threading libraries.
I suspect that is mostly happening because of the, uhm,
intentionally extremely twisted-in-the-brains approach that is being used to
actually build the library as part of the buiild,
except without actually building it as part of the build.
If we do actually build it as part of the build,
then all the transitive dependencies should magically be in order,
and maybe everything will just work.
This new version of cmake magic was written by me in
0e22f085c5/cmake/Modules/GoogleTest.cmake.in0e22f085c5/cmake/Modules/GoogleTest.cmake, based on the official googletest docs and LOTS of experimentation.
Created BenchmarkName class which holds the full benchmark
name and allows specifying and retrieving different components
of the name (e.g. ARGS, THREADS etc.)
Fixes#730.
This is related to @BaaMeow's work in https://github.com/google/benchmark/pull/616 but is not based on it.
Two new fields are tracked, and dumped into JSON:
* If the run is an aggregate, the aggregate's name is stored.
It can be RMS, BigO, mean, median, stddev, or any custom stat name.
* The aggregate-name-less run name is additionally stored.
I.e. not some name of the benchmark function, but the actual
name, but without the 'aggregate name' suffix.
This way one can group/filter all the runs,
and filter by the particular aggregate type.
I *might* need this for further tooling improvement.
Or maybe not.
But this is certainly worthwhile for custom tooling.
* Counter(): add 'one thousand' param.
Needed for https://github.com/google/benchmark/pull/654
Custom user counters are quite custom. It is not guaranteed
that the user *always* expects for these to have 1k == 1000.
If the counter represents bytes/memory/etc, 1k should be 1024.
Some bikeshedding points:
1. Is this sufficient, or do we really want to go full on
into custom types with names?
I think just the '1000' is sufficient for now.
2. Should there be a helper benchmark::Counter::Counter{1000,1024}()
static 'constructor' functions, since these two, by far,
will be the most used?
3. In the future, we should be somehow encoding this info into JSON.
* Counter(): use std::pair<> to represent 'one thousand'
* Counter(): just use a new enum with two values 1000 vs 1024.
Simpler is better. If someone comes up with a real reason
to need something more advanced, it can be added later on.
* Counter: just store the 1000 or 1024 in the One_K values directly
* Counter: s/One_K/OneK/
* Fix compilation on Android with GNU STL
GNU STL in Android NDK lacks string conversion functions from C++11, including std::stoul, std::stoi, and std::stod.
This patch reimplements these functions in benchmark:: namespace using C-style equivalents from C++03.
* Avoid use of log2 which doesn't exist in Android GNU STL
GNU STL in Android NDK lacks log2 function from C99/C++11.
This patch replaces their use in the code with double log(double) function.
* Add benchmark_main library with support for Bazel.
* fix newline at end of file
* Add CMake support for benchmark_main.
* Mention optionally using benchmark_main in README.
* Allow support for negative regex filtering
This patch allows one to apply a negation to the entire regex filter
by appending it with a '-' character, much in the same style as
GoogleTest uses.
* Address issues in PR
* Add unit tests for negative filtering
* Allow AddRange to work with int64_t.
Fixes#516
Also, tweak how we manage per-test build needs, and create a standard
_gtest suffix for googletest to differentiate from non-googletest tests.
I also ran clang-format on the files that I changed (but not the
benchmark include or main src as they have too many clang-format
issues).
* Add benchmark_gtest to cmake
* Set(Items|Bytes)Processed now take int64_t
* Add tests to verify assembler output -- Fix DoNotOptimize.
For things like `DoNotOptimize`, `ClobberMemory`, and even `KeepRunning()`,
it is important exactly what assembly they generate. However, we currently
have no way to test this. Instead it must be manually validated every
time a change occurs -- including a change in compiler version.
This patch attempts to introduce a way to test the assembled output automatically.
It's mirrors how LLVM verifies compiler output, and it uses LLVM FileCheck to run
the tests in a similar way.
The tests function by generating the assembly for a test in CMake, and then
using FileCheck to verify the // CHECK lines in the source file are found
in the generated assembly.
Currently, the tests only run on 64-bit x86 systems under GCC and Clang,
and when FileCheck is found on the system.
Additionally, this patch tries to improve the code gen from DoNotOptimize.
This should probably be a separate change, but I needed something to test.
* Disable assembly tests on Bazel for now
* Link FIXME to github issue
* Fix Tests on OS X
* fix strip_asm.py to work on both Linux and OS X like targets
Older CMake versions, in particular 2.8, don't seem to correctly handle
interface include directories. This causes failures when building the
tests. Additionally, older CMake versions use a different library install
directory than expected (i.e. they use lib/<target-triple>). This caused
certain tests to fail to link.
This patch fixes both those issues. The first by manually adding the
correct include directory when building the tests. The second by specifying
the library output directory when configuring the GTest build.
* Add support for GTest based unit tests.
As Dominic and I have previously discussed, there is some
need/desire to improve the testing situation in Google Benchmark.
One step to fixing this problem is to make it easier to write
unit tests by adding support for GTest, which is what this patch does.
By default it looks for an installed version of GTest. However the
user can specify -DBENCHMARK_BUILD_EXTERNAL_GTEST=ON to instead
download, build, and use copy of gtest from source. This is
quite useful when Benchmark is being built in non-standard configurations,
such as against libc++ or in 32 bit mode.
The benchmark library is compiled as C++11, but certain
tests are compiled as C++03. When -flto is enabled GCC 5.4
and above will diagnose an ODR violation in libstdc++'s <map>.
This ODR violation, although real, should likely be benign. For
this reason it seems sensible to simply suppress -Wodr when building
the C++03 test.
This patch fixes#420 and supersede's PR #424.
* Fix#342: DoNotOptimize causes compile errors on older GCC versions.
DoNotOptimize uses inline assembly contraints to tell
the compiler what the type of the input variable. The 'g'
operand allows the input to be any register, memory, or
immediate integer operand. However this constraint seems
to be too weak on older GCC versions, and certain inputs
will cause compile errors.
This patch changes the constraint to 'X', which is documented
as "any operand whatsoever is allowed". This appears to fix
the issues with older GCC versions.
However Clang doesn't seem to like "X", and will attempt
to put the input into a register even when it can't/shouldn't;
causing a compile error. However using "g" seems to work like
"X" with GCC, so for this reason Clang still uses "g".
* Try alternative formulation to placate GCC
In non-debug builds CMake automatically adds -DNDEBUG, this means
that uses of `assert` in the tests are disabled for non-debug builds.
Obviously we want these tests to run, regardless of configuration.
This patch strips -DNDEBUG during non-debug builds and adds
-UNDEBUG just to be sure.
* refactor
* Move default substitutions into library
* Move default substitutions to the *right* place in the library
* Fix init order issues that caused test failures
* improve diagnostics
* add missing include
* general cleanup
* Address review comments
* Support multiple ranges in the benchmark
google-benchmark library allows to provide up to two ranges to the
benchmark method (range_x and range_y). However, in many cases it's not
sufficient. The patch introduces multi-range features, so user can easily
define multiple ranges by passing a vector of integers, and access values
through the method range(i).
* Remove redundant API
Functions State::range_x() and State::range_y() have been removed. They should
be replaced by State::range(0) and State::range(1).
Functions Benchmark::ArgPair() and Benchmark::RangePair() have been removed.
They should be replaced by Benchmark::Args() and Benchmark::Ranges().
* Add RegisterBenchmark
* fix test inputs
* fix UB caused by unitialized value
* Add RegisterBenchmark
* fix test inputs
* fix UB caused by unitialized value
* Work around GCC 4.6/4.7/4.8 bug
* Add test for reporter output.
* setup err_stream tests
* Fix warnings in tests
* whitespace
* Fix build errors caused by super pedantic compilers
* Pass streams by pointer not non-const reference
This patch adds a `coverage` target that allows coverage statisitics to be
retrieved for the project. It requires that lcov and gcov is installed and
that the generator is unix makefiles but this can be improved upon in
future releases.
To make it work use the coverage build type:
```
cmake -DCMAKE_BUILD_TYPE=Coverage .
make coverage
```
This patch adopts a new internal structure for how timings are performed.
Currently every iteration of a benchmark checks to see if it has been running
for an appropriate amount of time. Checking the clock introduces noise into
the timings and this can cause inconsistent output from each benchmark.
Now every iteration of a benchmark only checks an iteration count to see if it
should stop running. The iteration count is determined before hand by testing
the benchmark on a series of increasing iteration counts until a suitable count
is found. This increases the amount of time it takes to run the actual benchmarks
but it also greatly increases the accuracy of the results.
This patch introduces some breaking changes. The notable breaking changes are:
1. Benchmarks run on multiple threads no generate a report per thread. Instead
only a single report is generated.
2. ::benchmark::UseRealTime() was removed and replaced with State::UseRealTime().