Add 'benchmark::DoNotOptimize(...)' to help users prevent optimizations

This commit is contained in:
Eric Fiselier 2015-03-27 16:35:46 -04:00
parent 0a0bb8feb1
commit e428b9eec3
5 changed files with 50 additions and 31 deletions

View File

@ -160,6 +160,19 @@ static void BM_MultiThreaded(benchmark::State& state) {
} }
} }
BENCHMARK(BM_MultiThreaded)->Threads(2); BENCHMARK(BM_MultiThreaded)->Threads(2);
To prevent a value or expression from being optimized away by the compiler
the `benchmark::DoNotOptimize(...)` function can be used.
```c++
static void BM_test(benchmark::State& state) {
while (state.KeepRunning()) {
int x = 0;
for (int i=0; i < 64; ++i) {
benchmark::DoNotOptimize(x += i);
}
}
}
``` ```

View File

@ -174,8 +174,27 @@ struct EnableIfString<T, typename Voider<typename T::basic_string>::type> {
typedef int type; typedef int type;
}; };
void UseCharPointer(char const volatile*);
} // end namespace internal } // end namespace internal
// The DoNotOptimize(...) function can be used to prevent a value or
// expression from being optimized away by the compiler. This function is
// intented to add little to no overhead.
// See: http://stackoverflow.com/questions/28287064
#if defined(__GNUC__)
template <class Tp>
inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp const& value) {
asm volatile("" : "+r" (const_cast<Tp&>(value)));
}
#else
template <class Tp>
inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp const& value) {
internal::UseCharPointer(&reinterpret_cast<char const volatile&>(value));
}
#endif
// State is passed to a running Benchmark and contains state for the // State is passed to a running Benchmark and contains state for the
// benchmark to use. // benchmark to use.
class State { class State {

View File

@ -73,6 +73,8 @@ namespace benchmark {
namespace internal { namespace internal {
void UseCharPointer(char const volatile*) {}
// NOTE: This is a dummy "mutex" type used to denote the actual mutex // NOTE: This is a dummy "mutex" type used to denote the actual mutex
// returned by GetBenchmarkLock(). This is only used to placate the thread // returned by GetBenchmarkLock(). This is only used to placate the thread
// safety warnings by giving the return of GetBenchmarkLock() a name. // safety warnings by giving the return of GetBenchmarkLock() a name.

View File

@ -8,8 +8,7 @@
void BM_empty(benchmark::State& state) { void BM_empty(benchmark::State& state) {
while (state.KeepRunning()) { while (state.KeepRunning()) {
volatile std::size_t x = state.iterations(); benchmark::DoNotOptimize(state.iterations());
((void)x);
} }
} }
BENCHMARK(BM_empty); BENCHMARK(BM_empty);
@ -18,8 +17,7 @@ BENCHMARK(BM_empty)->ThreadPerCpu();
void BM_spin_empty(benchmark::State& state) { void BM_spin_empty(benchmark::State& state) {
while (state.KeepRunning()) { while (state.KeepRunning()) {
for (int x = 0; x < state.range_x(); ++x) { for (int x = 0; x < state.range_x(); ++x) {
volatile int dummy = x; benchmark::DoNotOptimize(x);
((void)dummy);
} }
} }
} }
@ -28,13 +26,11 @@ BASIC_BENCHMARK_TEST(BM_spin_empty)->ThreadPerCpu();
void BM_spin_pause_before(benchmark::State& state) { void BM_spin_pause_before(benchmark::State& state) {
for (int i = 0; i < state.range_x(); ++i) { for (int i = 0; i < state.range_x(); ++i) {
volatile int dummy = i; benchmark::DoNotOptimize(i);
((void)dummy);
} }
while(state.KeepRunning()) { while(state.KeepRunning()) {
for (int i = 0; i < state.range_x(); ++i) { for (int i = 0; i < state.range_x(); ++i) {
volatile int dummy = i; benchmark::DoNotOptimize(i);
((void)dummy);
} }
} }
} }
@ -46,13 +42,11 @@ void BM_spin_pause_during(benchmark::State& state) {
while(state.KeepRunning()) { while(state.KeepRunning()) {
state.PauseTiming(); state.PauseTiming();
for (int i = 0; i < state.range_x(); ++i) { for (int i = 0; i < state.range_x(); ++i) {
volatile int dummy = i; benchmark::DoNotOptimize(i);
((void)dummy);
} }
state.ResumeTiming(); state.ResumeTiming();
for (int i = 0; i < state.range_x(); ++i) { for (int i = 0; i < state.range_x(); ++i) {
volatile int dummy = i; benchmark::DoNotOptimize(i);
((void)dummy);
} }
} }
} }
@ -81,13 +75,11 @@ BENCHMARK(BM_pause_during_realtime)->ThreadPerCpu();
void BM_spin_pause_after(benchmark::State& state) { void BM_spin_pause_after(benchmark::State& state) {
while(state.KeepRunning()) { while(state.KeepRunning()) {
for (int i = 0; i < state.range_x(); ++i) { for (int i = 0; i < state.range_x(); ++i) {
volatile int dummy = i; benchmark::DoNotOptimize(i);
((void)dummy);
} }
} }
for (int i = 0; i < state.range_x(); ++i) { for (int i = 0; i < state.range_x(); ++i) {
volatile int dummy = i; benchmark::DoNotOptimize(i);
((void)dummy);
} }
} }
BASIC_BENCHMARK_TEST(BM_spin_pause_after); BASIC_BENCHMARK_TEST(BM_spin_pause_after);
@ -96,18 +88,15 @@ BASIC_BENCHMARK_TEST(BM_spin_pause_after)->ThreadPerCpu();
void BM_spin_pause_before_and_after(benchmark::State& state) { void BM_spin_pause_before_and_after(benchmark::State& state) {
for (int i = 0; i < state.range_x(); ++i) { for (int i = 0; i < state.range_x(); ++i) {
volatile int dummy = i; benchmark::DoNotOptimize(i);
((void)dummy);
} }
while(state.KeepRunning()) { while(state.KeepRunning()) {
for (int i = 0; i < state.range_x(); ++i) { for (int i = 0; i < state.range_x(); ++i) {
volatile int dummy = i; benchmark::DoNotOptimize(i);
((void)dummy);
} }
} }
for (int i = 0; i < state.range_x(); ++i) { for (int i = 0; i < state.range_x(); ++i) {
volatile int dummy = i; benchmark::DoNotOptimize(i);
((void)dummy);
} }
} }
BASIC_BENCHMARK_TEST(BM_spin_pause_before_and_after); BASIC_BENCHMARK_TEST(BM_spin_pause_before_and_after);

View File

@ -84,9 +84,8 @@ BENCHMARK_RANGE(BM_CalculatePiRange, 1, 1024 * 1024);
static void BM_CalculatePi(benchmark::State& state) { static void BM_CalculatePi(benchmark::State& state) {
static const int depth = 1024; static const int depth = 1024;
double pi BENCHMARK_UNUSED = 0.0;
while (state.KeepRunning()) { while (state.KeepRunning()) {
pi = CalculatePi(depth); benchmark::DoNotOptimize(CalculatePi(depth));
} }
} }
BENCHMARK(BM_CalculatePi)->Threads(8); BENCHMARK(BM_CalculatePi)->Threads(8);
@ -129,11 +128,8 @@ BENCHMARK_TEMPLATE(BM_Sequential, std::vector<int>, int)->Arg(512);
static void BM_StringCompare(benchmark::State& state) { static void BM_StringCompare(benchmark::State& state) {
std::string s1(state.range_x(), '-'); std::string s1(state.range_x(), '-');
std::string s2(state.range_x(), '-'); std::string s2(state.range_x(), '-');
int r = 0;
while (state.KeepRunning()) while (state.KeepRunning())
r |= s1.compare(s2); benchmark::DoNotOptimize(s1.compare(s2));
// Prevent compiler optimizations
assert(r != std::numeric_limits<int>::max());
} }
BENCHMARK(BM_StringCompare)->Range(1, 1<<20); BENCHMARK(BM_StringCompare)->Range(1, 1<<20);
@ -159,10 +155,10 @@ BENCHMARK(BM_SetupTeardown)->ThreadPerCpu();
static void BM_LongTest(benchmark::State& state) { static void BM_LongTest(benchmark::State& state) {
double tracker = 0.0; double tracker = 0.0;
while (state.KeepRunning()) while (state.KeepRunning()) {
for (int i = 0; i < state.range_x(); ++i) for (int i = 0; i < state.range_x(); ++i)
tracker += i; benchmark::DoNotOptimize(tracker += i);
assert(tracker > 1.0); }
} }
BENCHMARK(BM_LongTest)->Range(1<<16,1<<28); BENCHMARK(BM_LongTest)->Range(1<<16,1<<28);