mirror of
https://github.com/google/benchmark.git
synced 2025-04-04 08:30:58 +08:00
Merge branch 'ismaelJimenez-update_complexity'
This commit is contained in:
commit
3f7a9c76fb
@ -139,7 +139,7 @@ calculated automatically.
|
|||||||
|
|
||||||
```c++
|
```c++
|
||||||
BENCHMARK(BM_StringCompare)
|
BENCHMARK(BM_StringCompare)
|
||||||
->RangeMultiplier(2)->Range(1<<10, 1<<18)->Complexity(benchmark::oAuto);
|
->RangeMultiplier(2)->Range(1<<10, 1<<18)->Complexity();
|
||||||
```
|
```
|
||||||
|
|
||||||
### Templated benchmarks
|
### Templated benchmarks
|
||||||
|
@ -154,7 +154,6 @@ BENCHMARK(BM_test)->Unit(benchmark::kMillisecond);
|
|||||||
#include <stdint.h>
|
#include <stdint.h>
|
||||||
|
|
||||||
#include "macros.h"
|
#include "macros.h"
|
||||||
#include "complexity.h"
|
|
||||||
|
|
||||||
namespace benchmark {
|
namespace benchmark {
|
||||||
class BenchmarkReporter;
|
class BenchmarkReporter;
|
||||||
@ -237,6 +236,20 @@ enum TimeUnit {
|
|||||||
kMillisecond
|
kMillisecond
|
||||||
};
|
};
|
||||||
|
|
||||||
|
// BigO is passed to a benchmark in order to specify the asymptotic computational
|
||||||
|
// complexity for the benchmark. In case oAuto is selected, complexity will be
|
||||||
|
// calculated automatically to the best fit.
|
||||||
|
enum BigO {
|
||||||
|
oNone,
|
||||||
|
o1,
|
||||||
|
oN,
|
||||||
|
oNSquared,
|
||||||
|
oNCubed,
|
||||||
|
oLogN,
|
||||||
|
oNLogN,
|
||||||
|
oAuto
|
||||||
|
};
|
||||||
|
|
||||||
// State is passed to a running Benchmark and contains state for the
|
// State is passed to a running Benchmark and contains state for the
|
||||||
// benchmark to use.
|
// benchmark to use.
|
||||||
class State {
|
class State {
|
||||||
@ -523,7 +536,7 @@ public:
|
|||||||
|
|
||||||
// Set the asymptotic computational complexity for the benchmark. If called
|
// Set the asymptotic computational complexity for the benchmark. If called
|
||||||
// the asymptotic computational complexity will be shown on the output.
|
// the asymptotic computational complexity will be shown on the output.
|
||||||
Benchmark* Complexity(BigO complexity);
|
Benchmark* Complexity(BigO complexity = benchmark::oAuto);
|
||||||
|
|
||||||
// Support for running multiple copies of the same benchmark concurrently
|
// Support for running multiple copies of the same benchmark concurrently
|
||||||
// in multiple threads. This may be useful when measuring the scaling
|
// in multiple threads. This may be useful when measuring the scaling
|
||||||
|
@ -1,42 +0,0 @@
|
|||||||
#ifndef COMPLEXITY_H_
|
|
||||||
#define COMPLEXITY_H_
|
|
||||||
|
|
||||||
#include <string>
|
|
||||||
|
|
||||||
namespace benchmark {
|
|
||||||
|
|
||||||
// BigO is passed to a benchmark in order to specify the asymptotic computational
|
|
||||||
// complexity for the benchmark. In case oAuto is selected, complexity will be
|
|
||||||
// calculated automatically to the best fit.
|
|
||||||
enum BigO {
|
|
||||||
oNone,
|
|
||||||
o1,
|
|
||||||
oN,
|
|
||||||
oNSquared,
|
|
||||||
oNCubed,
|
|
||||||
oLogN,
|
|
||||||
oNLogN,
|
|
||||||
oAuto
|
|
||||||
};
|
|
||||||
|
|
||||||
inline std::string GetBigO(BigO complexity) {
|
|
||||||
switch (complexity) {
|
|
||||||
case oN:
|
|
||||||
return "* N";
|
|
||||||
case oNSquared:
|
|
||||||
return "* N**2";
|
|
||||||
case oNCubed:
|
|
||||||
return "* N**3";
|
|
||||||
case oLogN:
|
|
||||||
return "* lgN";
|
|
||||||
case oNLogN:
|
|
||||||
return "* NlgN";
|
|
||||||
case o1:
|
|
||||||
return "* 1";
|
|
||||||
default:
|
|
||||||
return "";
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
} // end namespace benchmark
|
|
||||||
#endif // COMPLEXITY_H_
|
|
@ -5,7 +5,7 @@ include_directories(${PROJECT_SOURCE_DIR}/src)
|
|||||||
set(SOURCE_FILES "benchmark.cc" "colorprint.cc" "commandlineflags.cc"
|
set(SOURCE_FILES "benchmark.cc" "colorprint.cc" "commandlineflags.cc"
|
||||||
"console_reporter.cc" "csv_reporter.cc" "json_reporter.cc"
|
"console_reporter.cc" "csv_reporter.cc" "json_reporter.cc"
|
||||||
"log.cc" "reporter.cc" "sleep.cc" "string_util.cc"
|
"log.cc" "reporter.cc" "sleep.cc" "string_util.cc"
|
||||||
"sysinfo.cc" "walltime.cc" "minimal_leastsq.cc")
|
"sysinfo.cc" "walltime.cc" "complexity.cc")
|
||||||
# Determine the correct regular expression engine to use
|
# Determine the correct regular expression engine to use
|
||||||
if(HAVE_STD_REGEX)
|
if(HAVE_STD_REGEX)
|
||||||
set(RE_FILES "re_std.cc")
|
set(RE_FILES "re_std.cc")
|
||||||
|
164
src/complexity.cc
Normal file
164
src/complexity.cc
Normal file
@ -0,0 +1,164 @@
|
|||||||
|
// Copyright 2016 Ismael Jimenez Martinez. All rights reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
// Source project : https://github.com/ismaelJimenez/cpp.leastsq
|
||||||
|
// Adapted to be used with google benchmark
|
||||||
|
|
||||||
|
#include "benchmark/benchmark_api.h"
|
||||||
|
|
||||||
|
#include "complexity.h"
|
||||||
|
#include "check.h"
|
||||||
|
#include <math.h>
|
||||||
|
#include <functional>
|
||||||
|
|
||||||
|
namespace benchmark {
|
||||||
|
|
||||||
|
// Internal function to calculate the different scalability forms
|
||||||
|
std::function<double(int)> FittingCurve(BigO complexity) {
|
||||||
|
switch (complexity) {
|
||||||
|
case oN:
|
||||||
|
return [](int n) {return n; };
|
||||||
|
case oNSquared:
|
||||||
|
return [](int n) {return n*n; };
|
||||||
|
case oNCubed:
|
||||||
|
return [](int n) {return n*n*n; };
|
||||||
|
case oLogN:
|
||||||
|
return [](int n) {return log2(n); };
|
||||||
|
case oNLogN:
|
||||||
|
return [](int n) {return n * log2(n); };
|
||||||
|
case o1:
|
||||||
|
default:
|
||||||
|
return [](int) {return 1; };
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Function to return an string for the calculated complexity
|
||||||
|
std::string GetBigOString(BigO complexity) {
|
||||||
|
switch (complexity) {
|
||||||
|
case oN:
|
||||||
|
return "* N";
|
||||||
|
case oNSquared:
|
||||||
|
return "* N**2";
|
||||||
|
case oNCubed:
|
||||||
|
return "* N**3";
|
||||||
|
case oLogN:
|
||||||
|
return "* lgN";
|
||||||
|
case oNLogN:
|
||||||
|
return "* NlgN";
|
||||||
|
case o1:
|
||||||
|
return "* 1";
|
||||||
|
default:
|
||||||
|
return "";
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Find the coefficient for the high-order term in the running time, by
|
||||||
|
// minimizing the sum of squares of relative error, for the fitting curve
|
||||||
|
// given by the lambda expresion.
|
||||||
|
// - n : Vector containing the size of the benchmark tests.
|
||||||
|
// - time : Vector containing the times for the benchmark tests.
|
||||||
|
// - fitting_curve : lambda expresion (e.g. [](int n) {return n; };).
|
||||||
|
|
||||||
|
// For a deeper explanation on the algorithm logic, look the README file at
|
||||||
|
// http://github.com/ismaelJimenez/Minimal-Cpp-Least-Squared-Fit
|
||||||
|
|
||||||
|
// This interface is currently not used from the oustide, but it has been
|
||||||
|
// provided for future upgrades. If in the future it is not needed to support
|
||||||
|
// Cxx03, then all the calculations could be upgraded to use lambdas because
|
||||||
|
// they are more powerful and provide a cleaner inferface than enumerators,
|
||||||
|
// but complete implementation with lambdas will not work for Cxx03
|
||||||
|
// (e.g. lack of std::function).
|
||||||
|
// In case lambdas are implemented, the interface would be like :
|
||||||
|
// -> Complexity([](int n) {return n;};)
|
||||||
|
// and any arbitrary and valid equation would be allowed, but the option to
|
||||||
|
// calculate the best fit to the most common scalability curves will still
|
||||||
|
// be kept.
|
||||||
|
|
||||||
|
LeastSq CalculateLeastSq(const std::vector<int>& n,
|
||||||
|
const std::vector<double>& time,
|
||||||
|
std::function<double(int)> fitting_curve) {
|
||||||
|
double sigma_gn = 0.0;
|
||||||
|
double sigma_gn_squared = 0.0;
|
||||||
|
double sigma_time = 0.0;
|
||||||
|
double sigma_time_gn = 0.0;
|
||||||
|
|
||||||
|
// Calculate least square fitting parameter
|
||||||
|
for (size_t i = 0; i < n.size(); ++i) {
|
||||||
|
double gn_i = fitting_curve(n[i]);
|
||||||
|
sigma_gn += gn_i;
|
||||||
|
sigma_gn_squared += gn_i * gn_i;
|
||||||
|
sigma_time += time[i];
|
||||||
|
sigma_time_gn += time[i] * gn_i;
|
||||||
|
}
|
||||||
|
|
||||||
|
LeastSq result;
|
||||||
|
|
||||||
|
// Calculate complexity.
|
||||||
|
result.coef = sigma_time_gn / sigma_gn_squared;
|
||||||
|
|
||||||
|
// Calculate RMS
|
||||||
|
double rms = 0.0;
|
||||||
|
for (size_t i = 0; i < n.size(); ++i) {
|
||||||
|
double fit = result.coef * fitting_curve(n[i]);
|
||||||
|
rms += pow((time[i] - fit), 2);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Normalized RMS by the mean of the observed values
|
||||||
|
double mean = sigma_time / n.size();
|
||||||
|
result.rms = sqrt(rms / n.size()) / mean;
|
||||||
|
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Find the coefficient for the high-order term in the running time, by
|
||||||
|
// minimizing the sum of squares of relative error.
|
||||||
|
// - n : Vector containing the size of the benchmark tests.
|
||||||
|
// - time : Vector containing the times for the benchmark tests.
|
||||||
|
// - complexity : If different than oAuto, the fitting curve will stick to
|
||||||
|
// this one. If it is oAuto, it will be calculated the best
|
||||||
|
// fitting curve.
|
||||||
|
LeastSq MinimalLeastSq(const std::vector<int>& n,
|
||||||
|
const std::vector<double>& time,
|
||||||
|
const BigO complexity) {
|
||||||
|
CHECK_EQ(n.size(), time.size());
|
||||||
|
CHECK_GE(n.size(), 2); // Do not compute fitting curve is less than two benchmark runs are given
|
||||||
|
CHECK_NE(complexity, oNone);
|
||||||
|
|
||||||
|
LeastSq best_fit;
|
||||||
|
|
||||||
|
if(complexity == oAuto) {
|
||||||
|
std::vector<BigO> fit_curves = {
|
||||||
|
oLogN, oN, oNLogN, oNSquared, oNCubed };
|
||||||
|
|
||||||
|
// Take o1 as default best fitting curve
|
||||||
|
best_fit = CalculateLeastSq(n, time, FittingCurve(o1));
|
||||||
|
best_fit.complexity = o1;
|
||||||
|
|
||||||
|
// Compute all possible fitting curves and stick to the best one
|
||||||
|
for (const auto& fit : fit_curves) {
|
||||||
|
LeastSq current_fit = CalculateLeastSq(n, time, FittingCurve(fit));
|
||||||
|
if (current_fit.rms < best_fit.rms) {
|
||||||
|
best_fit = current_fit;
|
||||||
|
best_fit.complexity = fit;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
best_fit = CalculateLeastSq(n, time, FittingCurve(complexity));
|
||||||
|
best_fit.complexity = complexity;
|
||||||
|
}
|
||||||
|
|
||||||
|
return best_fit;
|
||||||
|
}
|
||||||
|
|
||||||
|
} // end namespace benchmark
|
@ -15,12 +15,15 @@
|
|||||||
// Source project : https://github.com/ismaelJimenez/cpp.leastsq
|
// Source project : https://github.com/ismaelJimenez/cpp.leastsq
|
||||||
// Adapted to be used with google benchmark
|
// Adapted to be used with google benchmark
|
||||||
|
|
||||||
#if !defined(MINIMAL_LEASTSQ_H_)
|
#ifndef COMPLEXITY_H_
|
||||||
#define MINIMAL_LEASTSQ_H_
|
#define COMPLEXITY_H_
|
||||||
|
|
||||||
|
#include <string>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
#include "benchmark/benchmark_api.h"
|
#include "benchmark/benchmark_api.h"
|
||||||
|
|
||||||
#include <vector>
|
namespace benchmark {
|
||||||
|
|
||||||
// This data structure will contain the result returned by MinimalLeastSq
|
// This data structure will contain the result returned by MinimalLeastSq
|
||||||
// - coef : Estimated coeficient for the high-order term as
|
// - coef : Estimated coeficient for the high-order term as
|
||||||
@ -33,19 +36,23 @@
|
|||||||
|
|
||||||
struct LeastSq {
|
struct LeastSq {
|
||||||
LeastSq() :
|
LeastSq() :
|
||||||
coef(0),
|
coef(0.0),
|
||||||
rms(0),
|
rms(0.0),
|
||||||
complexity(benchmark::oNone) {}
|
complexity(oNone) {}
|
||||||
|
|
||||||
double coef;
|
double coef;
|
||||||
double rms;
|
double rms;
|
||||||
benchmark::BigO complexity;
|
BigO complexity;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
// Function to return an string for the calculated complexity
|
||||||
|
std::string GetBigOString(BigO complexity);
|
||||||
|
|
||||||
// Find the coefficient for the high-order term in the running time, by
|
// Find the coefficient for the high-order term in the running time, by
|
||||||
// minimizing the sum of squares of relative error.
|
// minimizing the sum of squares of relative error.
|
||||||
LeastSq MinimalLeastSq(const std::vector<int>& n,
|
LeastSq MinimalLeastSq(const std::vector<int>& n,
|
||||||
const std::vector<double>& time,
|
const std::vector<double>& time,
|
||||||
const benchmark::BigO complexity = benchmark::oAuto);
|
const BigO complexity = oAuto);
|
||||||
|
|
||||||
#endif
|
} // end namespace benchmark
|
||||||
|
#endif // COMPLEXITY_H_
|
@ -13,6 +13,7 @@
|
|||||||
// limitations under the License.
|
// limitations under the License.
|
||||||
|
|
||||||
#include "benchmark/reporter.h"
|
#include "benchmark/reporter.h"
|
||||||
|
#include "complexity.h"
|
||||||
|
|
||||||
#include <cstdint>
|
#include <cstdint>
|
||||||
#include <cstdio>
|
#include <cstdio>
|
||||||
@ -129,7 +130,7 @@ void ConsoleReporter::PrintRunData(const Run& result) {
|
|||||||
std::tie(timeLabel, multiplier) = GetTimeUnitAndMultiplier(result.time_unit);
|
std::tie(timeLabel, multiplier) = GetTimeUnitAndMultiplier(result.time_unit);
|
||||||
|
|
||||||
if(result.report_big_o) {
|
if(result.report_big_o) {
|
||||||
std::string big_o = result.report_big_o ? GetBigO(result.complexity) : "";
|
std::string big_o = result.report_big_o ? GetBigOString(result.complexity) : "";
|
||||||
ColorPrintf(COLOR_YELLOW, "%10.4f %s %10.4f %s ",
|
ColorPrintf(COLOR_YELLOW, "%10.4f %s %10.4f %s ",
|
||||||
result.real_accumulated_time * multiplier,
|
result.real_accumulated_time * multiplier,
|
||||||
big_o.c_str(),
|
big_o.c_str(),
|
||||||
|
@ -1,128 +0,0 @@
|
|||||||
// Copyright 2016 Ismael Jimenez Martinez. All rights reserved.
|
|
||||||
//
|
|
||||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
// you may not use this file except in compliance with the License.
|
|
||||||
// You may obtain a copy of the License at
|
|
||||||
//
|
|
||||||
// http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
//
|
|
||||||
// Unless required by applicable law or agreed to in writing, software
|
|
||||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
// See the License for the specific language governing permissions and
|
|
||||||
// limitations under the License.
|
|
||||||
|
|
||||||
// Source project : https://github.com/ismaelJimenez/cpp.leastsq
|
|
||||||
// Adapted to be used with google benchmark
|
|
||||||
|
|
||||||
#include "minimal_leastsq.h"
|
|
||||||
#include "check.h"
|
|
||||||
#include <math.h>
|
|
||||||
|
|
||||||
// Internal function to calculate the different scalability forms
|
|
||||||
double FittingCurve(double n, benchmark::BigO complexity) {
|
|
||||||
switch (complexity) {
|
|
||||||
case benchmark::oN:
|
|
||||||
return n;
|
|
||||||
case benchmark::oNSquared:
|
|
||||||
return pow(n, 2);
|
|
||||||
case benchmark::oNCubed:
|
|
||||||
return pow(n, 3);
|
|
||||||
case benchmark::oLogN:
|
|
||||||
return log2(n);
|
|
||||||
case benchmark::oNLogN:
|
|
||||||
return n * log2(n);
|
|
||||||
case benchmark::o1:
|
|
||||||
default:
|
|
||||||
return 1;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Internal function to find the coefficient for the high-order term in the
|
|
||||||
// running time, by minimizing the sum of squares of relative error.
|
|
||||||
// - n : Vector containing the size of the benchmark tests.
|
|
||||||
// - time : Vector containing the times for the benchmark tests.
|
|
||||||
// - complexity : Fitting curve.
|
|
||||||
// For a deeper explanation on the algorithm logic, look the README file at
|
|
||||||
// http://github.com/ismaelJimenez/Minimal-Cpp-Least-Squared-Fit
|
|
||||||
|
|
||||||
LeastSq CalculateLeastSq(const std::vector<int>& n,
|
|
||||||
const std::vector<double>& time,
|
|
||||||
const benchmark::BigO complexity) {
|
|
||||||
CHECK_NE(complexity, benchmark::oAuto);
|
|
||||||
|
|
||||||
double sigma_gn = 0;
|
|
||||||
double sigma_gn_squared = 0;
|
|
||||||
double sigma_time = 0;
|
|
||||||
double sigma_time_gn = 0;
|
|
||||||
|
|
||||||
// Calculate least square fitting parameter
|
|
||||||
for (size_t i = 0; i < n.size(); ++i) {
|
|
||||||
double gn_i = FittingCurve(n[i], complexity);
|
|
||||||
sigma_gn += gn_i;
|
|
||||||
sigma_gn_squared += gn_i * gn_i;
|
|
||||||
sigma_time += time[i];
|
|
||||||
sigma_time_gn += time[i] * gn_i;
|
|
||||||
}
|
|
||||||
|
|
||||||
LeastSq result;
|
|
||||||
result.complexity = complexity;
|
|
||||||
|
|
||||||
// Calculate complexity.
|
|
||||||
// o1 is treated as an special case
|
|
||||||
if (complexity != benchmark::o1) {
|
|
||||||
result.coef = sigma_time_gn / sigma_gn_squared;
|
|
||||||
} else {
|
|
||||||
result.coef = sigma_time / n.size();
|
|
||||||
}
|
|
||||||
|
|
||||||
// Calculate RMS
|
|
||||||
double rms = 0;
|
|
||||||
for (size_t i = 0; i < n.size(); ++i) {
|
|
||||||
double fit = result.coef * FittingCurve(n[i], complexity);
|
|
||||||
rms += pow((time[i] - fit), 2);
|
|
||||||
}
|
|
||||||
|
|
||||||
double mean = sigma_time / n.size();
|
|
||||||
|
|
||||||
// Normalized RMS by the mean of the observed values
|
|
||||||
result.rms = sqrt(rms / n.size()) / mean;
|
|
||||||
|
|
||||||
return result;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Find the coefficient for the high-order term in the running time, by
|
|
||||||
// minimizing the sum of squares of relative error.
|
|
||||||
// - n : Vector containing the size of the benchmark tests.
|
|
||||||
// - time : Vector containing the times for the benchmark tests.
|
|
||||||
// - complexity : If different than oAuto, the fitting curve will stick to
|
|
||||||
// this one. If it is oAuto, it will be calculated the best
|
|
||||||
// fitting curve.
|
|
||||||
LeastSq MinimalLeastSq(const std::vector<int>& n,
|
|
||||||
const std::vector<double>& time,
|
|
||||||
const benchmark::BigO complexity) {
|
|
||||||
CHECK_EQ(n.size(), time.size());
|
|
||||||
CHECK_GE(n.size(), 2); // Do not compute fitting curve is less than two benchmark runs are given
|
|
||||||
CHECK_NE(complexity, benchmark::oNone);
|
|
||||||
|
|
||||||
if(complexity == benchmark::oAuto) {
|
|
||||||
std::vector<benchmark::BigO> fit_curves = {
|
|
||||||
benchmark::oLogN, benchmark::oN, benchmark::oNLogN, benchmark::oNSquared,
|
|
||||||
benchmark::oNCubed };
|
|
||||||
|
|
||||||
// Take o1 as default best fitting curve
|
|
||||||
LeastSq best_fit = CalculateLeastSq(n, time, benchmark::o1);
|
|
||||||
|
|
||||||
// Compute all possible fitting curves and stick to the best one
|
|
||||||
for (const auto& fit : fit_curves) {
|
|
||||||
LeastSq current_fit = CalculateLeastSq(n, time, fit);
|
|
||||||
if (current_fit.rms < best_fit.rms) {
|
|
||||||
best_fit = current_fit;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return best_fit;
|
|
||||||
}
|
|
||||||
|
|
||||||
return CalculateLeastSq(n, time, complexity);
|
|
||||||
}
|
|
@ -13,7 +13,7 @@
|
|||||||
// limitations under the License.
|
// limitations under the License.
|
||||||
|
|
||||||
#include "benchmark/reporter.h"
|
#include "benchmark/reporter.h"
|
||||||
#include "minimal_leastsq.h"
|
#include "complexity.h"
|
||||||
|
|
||||||
#include <cstdlib>
|
#include <cstdlib>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
@ -40,7 +40,7 @@ static void BM_Complexity_O_N(benchmark::State& state) {
|
|||||||
state.SetComplexityN(state.range_x());
|
state.SetComplexityN(state.range_x());
|
||||||
}
|
}
|
||||||
BENCHMARK(BM_Complexity_O_N) -> RangeMultiplier(2) -> Range(1<<10, 1<<16) -> Complexity(benchmark::oN);
|
BENCHMARK(BM_Complexity_O_N) -> RangeMultiplier(2) -> Range(1<<10, 1<<16) -> Complexity(benchmark::oN);
|
||||||
BENCHMARK(BM_Complexity_O_N) -> RangeMultiplier(2) -> Range(1<<10, 1<<16) -> Complexity(benchmark::oAuto);
|
BENCHMARK(BM_Complexity_O_N) -> RangeMultiplier(2) -> Range(1<<10, 1<<16) -> Complexity();
|
||||||
|
|
||||||
static void BM_Complexity_O_N_Squared(benchmark::State& state) {
|
static void BM_Complexity_O_N_Squared(benchmark::State& state) {
|
||||||
std::string s1(state.range_x(), '-');
|
std::string s1(state.range_x(), '-');
|
||||||
@ -93,7 +93,7 @@ static void BM_Complexity_O_N_log_N(benchmark::State& state) {
|
|||||||
state.SetComplexityN(state.range_x());
|
state.SetComplexityN(state.range_x());
|
||||||
}
|
}
|
||||||
BENCHMARK(BM_Complexity_O_N_log_N) -> RangeMultiplier(2) -> Range(1<<10, 1<<16) -> Complexity(benchmark::oNLogN);
|
BENCHMARK(BM_Complexity_O_N_log_N) -> RangeMultiplier(2) -> Range(1<<10, 1<<16) -> Complexity(benchmark::oNLogN);
|
||||||
BENCHMARK(BM_Complexity_O_N_log_N) -> RangeMultiplier(2) -> Range(1<<10, 1<<16) -> Complexity(benchmark::oAuto);
|
BENCHMARK(BM_Complexity_O_N_log_N) -> RangeMultiplier(2) -> Range(1<<10, 1<<16) -> Complexity();
|
||||||
|
|
||||||
// Test benchmark with no range and check no complexity is calculated.
|
// Test benchmark with no range and check no complexity is calculated.
|
||||||
void BM_Extreme_Cases(benchmark::State& state) {
|
void BM_Extreme_Cases(benchmark::State& state) {
|
||||||
@ -101,6 +101,6 @@ void BM_Extreme_Cases(benchmark::State& state) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
BENCHMARK(BM_Extreme_Cases) -> Complexity(benchmark::oNLogN);
|
BENCHMARK(BM_Extreme_Cases) -> Complexity(benchmark::oNLogN);
|
||||||
BENCHMARK(BM_Extreme_Cases) -> Arg(42) -> Complexity(benchmark::oAuto);
|
BENCHMARK(BM_Extreme_Cases) -> Arg(42) -> Complexity();
|
||||||
|
|
||||||
BENCHMARK_MAIN()
|
BENCHMARK_MAIN()
|
||||||
|
Loading…
Reference in New Issue
Block a user