benchmark/test/user_counters_test.cc

532 lines
24 KiB
C++
Raw Normal View History

2017-04-28 02:25:20 +08:00
#undef NDEBUG
#include "benchmark/benchmark.h"
#include "output_test.h"
// ========================================================================= //
// ---------------------- Testing Prologue Output -------------------------- //
// ========================================================================= //
// clang-format off
2017-04-28 02:25:20 +08:00
ADD_CASES(TC_ConsoleOut,
{{"^[-]+$", MR_Next},
{"^Benchmark %s Time %s CPU %s Iterations UserCounters...$", MR_Next},
{"^[-]+$", MR_Next}});
ADD_CASES(TC_CSVOut, {{"%csv_header,\"bar\",\"foo\""}});
// clang-format on
2017-04-28 02:25:20 +08:00
// ========================================================================= //
// ------------------------- Simple Counters Output ------------------------ //
2017-04-28 02:25:20 +08:00
// ========================================================================= //
void BM_Counters_Simple(benchmark::State& state) {
for (auto _ : state) {
2017-04-28 02:25:20 +08:00
}
state.counters["foo"] = 1;
2017-05-02 05:22:11 +08:00
state.counters["bar"] = 2 * (double)state.iterations();
2017-04-28 02:25:20 +08:00
}
BENCHMARK(BM_Counters_Simple);
ADD_CASES(TC_ConsoleOut,
{{"^BM_Counters_Simple %console_report bar=%hrfloat foo=%hrfloat$"}});
2017-04-28 02:25:20 +08:00
ADD_CASES(TC_JSONOut, {{"\"name\": \"BM_Counters_Simple\",$"},
{"\"run_name\": \"BM_Counters_Simple\",$", MR_Next},
{"\"run_type\": \"iteration\",$", MR_Next},
{"\"repetitions\": 0,$", MR_Next},
{"\"repetition_index\": 0,$", MR_Next},
{"\"threads\": 1,$", MR_Next},
{"\"iterations\": %int,$", MR_Next},
Json reporter: don't cast floating-point to int; adjust tooling (#426) * Json reporter: passthrough fp, don't cast it to int; adjust tooling Json output format is generally meant for further processing using some automated tools. Thus, it makes sense not to intentionally limit the precision of the values contained in the report. As it can be seen, FormatKV() for doubles, used %.2f format, which was meant to preserve at least some of the precision. However, before that function is ever called, the doubles were already cast to the integer via RoundDouble()... This is also the case for console reporter, where it makes sense because the screen space is limited, and this reporter, however the CSV reporter does output some( decimal digits. Thus i can only conclude that the loss of the precision was not really considered, so i have decided to adjust the code of the json reporter to output the full fp precision. There can be several reasons why that is the right thing to do, the bigger the time_unit used, the greater the precision loss, so i'd say any sort of further processing (like e.g. tools/compare_bench.py does) is best done on the values with most precision. Also, that cast skewed the data away from zero, which i think may or may not result in false- positives/negatives in the output of tools/compare_bench.py * Json reporter: FormatKV(double): address review note * tools/gbench/report.py: skip benchmarks with different time units While it may be useful to teach it to operate on the measurements with different time units, which is now possible since floats are stored, and not the integers, but for now at least doing such a sanity-checking is better than providing misinformation.
2017-07-25 07:13:55 +08:00
{"\"real_time\": %float,$", MR_Next},
{"\"cpu_time\": %float,$", MR_Next},
2017-04-28 02:25:20 +08:00
{"\"time_unit\": \"ns\",$", MR_Next},
{"\"bar\": %float,$", MR_Next},
{"\"foo\": %float$", MR_Next},
{"}", MR_Next}});
ADD_CASES(TC_CSVOut, {{"^\"BM_Counters_Simple\",%csv_report,%float,%float$"}});
2017-04-30 05:27:55 +08:00
// VS2013 does not allow this function to be passed as a lambda argument
// to CHECK_BENCHMARK_RESULTS()
void CheckSimple(Results const& e) {
double its = e.NumIterations();
CHECK_COUNTER_VALUE(e, int, "foo", EQ, 1);
2017-04-29 03:45:30 +08:00
// check that the value of bar is within 0.1% of the expected value
CHECK_FLOAT_COUNTER_VALUE(e, "bar", EQ, 2. * its, 0.001);
2017-04-30 05:27:55 +08:00
}
CHECK_BENCHMARK_RESULTS("BM_Counters_Simple", &CheckSimple);
2017-04-28 02:25:20 +08:00
// ========================================================================= //
// --------------------- Counters+Items+Bytes/s Output --------------------- //
2017-04-28 02:25:20 +08:00
// ========================================================================= //
namespace {
int num_calls1 = 0;
}
2017-04-28 02:25:20 +08:00
void BM_Counters_WithBytesAndItemsPSec(benchmark::State& state) {
for (auto _ : state) {
// This test requires a non-zero CPU time to avoid divide-by-zero
benchmark::DoNotOptimize(state.iterations());
2017-04-28 02:25:20 +08:00
}
state.counters["foo"] = 1;
state.counters["bar"] = ++num_calls1;
2017-04-28 02:25:20 +08:00
state.SetBytesProcessed(364);
state.SetItemsProcessed(150);
2017-04-28 02:25:20 +08:00
}
BENCHMARK(BM_Counters_WithBytesAndItemsPSec);
ADD_CASES(TC_ConsoleOut, {{"^BM_Counters_WithBytesAndItemsPSec %console_report "
"bar=%hrfloat bytes_per_second=%hrfloat/s "
"foo=%hrfloat items_per_second=%hrfloat/s$"}});
ADD_CASES(TC_JSONOut,
{{"\"name\": \"BM_Counters_WithBytesAndItemsPSec\",$"},
{"\"run_name\": \"BM_Counters_WithBytesAndItemsPSec\",$", MR_Next},
{"\"run_type\": \"iteration\",$", MR_Next},
{"\"repetitions\": 0,$", MR_Next},
{"\"repetition_index\": 0,$", MR_Next},
{"\"threads\": 1,$", MR_Next},
{"\"iterations\": %int,$", MR_Next},
{"\"real_time\": %float,$", MR_Next},
{"\"cpu_time\": %float,$", MR_Next},
{"\"time_unit\": \"ns\",$", MR_Next},
{"\"bar\": %float,$", MR_Next},
{"\"bytes_per_second\": %float,$", MR_Next},
{"\"foo\": %float,$", MR_Next},
{"\"items_per_second\": %float$", MR_Next},
{"}", MR_Next}});
2017-04-28 02:25:20 +08:00
ADD_CASES(TC_CSVOut, {{"^\"BM_Counters_WithBytesAndItemsPSec\","
"%csv_bytes_items_report,%float,%float$"}});
2017-04-30 05:27:55 +08:00
// VS2013 does not allow this function to be passed as a lambda argument
// to CHECK_BENCHMARK_RESULTS()
void CheckBytesAndItemsPSec(Results const& e) {
double t = e.DurationCPUTime(); // this (and not real time) is the time used
CHECK_COUNTER_VALUE(e, int, "foo", EQ, 1);
CHECK_COUNTER_VALUE(e, int, "bar", EQ, num_calls1);
2017-04-29 03:45:30 +08:00
// check that the values are within 0.1% of the expected values
CHECK_FLOAT_RESULT_VALUE(e, "bytes_per_second", EQ, 364. / t, 0.001);
CHECK_FLOAT_RESULT_VALUE(e, "items_per_second", EQ, 150. / t, 0.001);
2017-04-30 05:27:55 +08:00
}
CHECK_BENCHMARK_RESULTS("BM_Counters_WithBytesAndItemsPSec",
&CheckBytesAndItemsPSec);
2017-04-28 02:25:20 +08:00
// ========================================================================= //
// ------------------------- Rate Counters Output -------------------------- //
// ========================================================================= //
void BM_Counters_Rate(benchmark::State& state) {
for (auto _ : state) {
// This test requires a non-zero CPU time to avoid divide-by-zero
benchmark::DoNotOptimize(state.iterations());
}
namespace bm = benchmark;
state.counters["foo"] = bm::Counter{1, bm::Counter::kIsRate};
state.counters["bar"] = bm::Counter{2, bm::Counter::kIsRate};
}
BENCHMARK(BM_Counters_Rate);
ADD_CASES(
TC_ConsoleOut,
{{"^BM_Counters_Rate %console_report bar=%hrfloat/s foo=%hrfloat/s$"}});
ADD_CASES(TC_JSONOut, {{"\"name\": \"BM_Counters_Rate\",$"},
{"\"run_name\": \"BM_Counters_Rate\",$", MR_Next},
{"\"run_type\": \"iteration\",$", MR_Next},
{"\"repetitions\": 0,$", MR_Next},
{"\"repetition_index\": 0,$", MR_Next},
{"\"threads\": 1,$", MR_Next},
{"\"iterations\": %int,$", MR_Next},
Json reporter: don't cast floating-point to int; adjust tooling (#426) * Json reporter: passthrough fp, don't cast it to int; adjust tooling Json output format is generally meant for further processing using some automated tools. Thus, it makes sense not to intentionally limit the precision of the values contained in the report. As it can be seen, FormatKV() for doubles, used %.2f format, which was meant to preserve at least some of the precision. However, before that function is ever called, the doubles were already cast to the integer via RoundDouble()... This is also the case for console reporter, where it makes sense because the screen space is limited, and this reporter, however the CSV reporter does output some( decimal digits. Thus i can only conclude that the loss of the precision was not really considered, so i have decided to adjust the code of the json reporter to output the full fp precision. There can be several reasons why that is the right thing to do, the bigger the time_unit used, the greater the precision loss, so i'd say any sort of further processing (like e.g. tools/compare_bench.py does) is best done on the values with most precision. Also, that cast skewed the data away from zero, which i think may or may not result in false- positives/negatives in the output of tools/compare_bench.py * Json reporter: FormatKV(double): address review note * tools/gbench/report.py: skip benchmarks with different time units While it may be useful to teach it to operate on the measurements with different time units, which is now possible since floats are stored, and not the integers, but for now at least doing such a sanity-checking is better than providing misinformation.
2017-07-25 07:13:55 +08:00
{"\"real_time\": %float,$", MR_Next},
{"\"cpu_time\": %float,$", MR_Next},
{"\"time_unit\": \"ns\",$", MR_Next},
{"\"bar\": %float,$", MR_Next},
{"\"foo\": %float$", MR_Next},
{"}", MR_Next}});
ADD_CASES(TC_CSVOut, {{"^\"BM_Counters_Rate\",%csv_report,%float,%float$"}});
2017-04-30 05:27:55 +08:00
// VS2013 does not allow this function to be passed as a lambda argument
// to CHECK_BENCHMARK_RESULTS()
void CheckRate(Results const& e) {
double t = e.DurationCPUTime(); // this (and not real time) is the time used
// check that the values are within 0.1% of the expected values
CHECK_FLOAT_COUNTER_VALUE(e, "foo", EQ, 1. / t, 0.001);
CHECK_FLOAT_COUNTER_VALUE(e, "bar", EQ, 2. / t, 0.001);
2017-04-30 05:27:55 +08:00
}
CHECK_BENCHMARK_RESULTS("BM_Counters_Rate", &CheckRate);
// ========================================================================= //
// ----------------------- Inverted Counters Output ------------------------ //
// ========================================================================= //
void BM_Invert(benchmark::State& state) {
for (auto _ : state) {
// This test requires a non-zero CPU time to avoid divide-by-zero
benchmark::DoNotOptimize(state.iterations());
}
namespace bm = benchmark;
state.counters["foo"] = bm::Counter{0.0001, bm::Counter::kInvert};
state.counters["bar"] = bm::Counter{10000, bm::Counter::kInvert};
}
BENCHMARK(BM_Invert);
ADD_CASES(TC_ConsoleOut,
{{"^BM_Invert %console_report bar=%hrfloatu foo=%hrfloatk$"}});
ADD_CASES(TC_JSONOut, {{"\"name\": \"BM_Invert\",$"},
{"\"run_name\": \"BM_Invert\",$", MR_Next},
{"\"run_type\": \"iteration\",$", MR_Next},
{"\"repetitions\": 0,$", MR_Next},
{"\"repetition_index\": 0,$", MR_Next},
{"\"threads\": 1,$", MR_Next},
{"\"iterations\": %int,$", MR_Next},
{"\"real_time\": %float,$", MR_Next},
{"\"cpu_time\": %float,$", MR_Next},
{"\"time_unit\": \"ns\",$", MR_Next},
{"\"bar\": %float,$", MR_Next},
{"\"foo\": %float$", MR_Next},
{"}", MR_Next}});
ADD_CASES(TC_CSVOut, {{"^\"BM_Invert\",%csv_report,%float,%float$"}});
// VS2013 does not allow this function to be passed as a lambda argument
// to CHECK_BENCHMARK_RESULTS()
void CheckInvert(Results const& e) {
CHECK_FLOAT_COUNTER_VALUE(e, "foo", EQ, 10000, 0.0001);
CHECK_FLOAT_COUNTER_VALUE(e, "bar", EQ, 0.0001, 0.0001);
}
CHECK_BENCHMARK_RESULTS("BM_Invert", &CheckInvert);
// ========================================================================= //
// ------------------------- InvertedRate Counters Output
// -------------------------- //
// ========================================================================= //
void BM_Counters_InvertedRate(benchmark::State& state) {
for (auto _ : state) {
// This test requires a non-zero CPU time to avoid divide-by-zero
benchmark::DoNotOptimize(state.iterations());
}
namespace bm = benchmark;
state.counters["foo"] =
bm::Counter{1, bm::Counter::kIsRate | bm::Counter::kInvert};
state.counters["bar"] =
bm::Counter{8192, bm::Counter::kIsRate | bm::Counter::kInvert};
}
BENCHMARK(BM_Counters_InvertedRate);
ADD_CASES(TC_ConsoleOut, {{"^BM_Counters_InvertedRate %console_report "
"bar=%hrfloats foo=%hrfloats$"}});
ADD_CASES(TC_JSONOut,
{{"\"name\": \"BM_Counters_InvertedRate\",$"},
{"\"run_name\": \"BM_Counters_InvertedRate\",$", MR_Next},
{"\"run_type\": \"iteration\",$", MR_Next},
{"\"repetitions\": 0,$", MR_Next},
{"\"repetition_index\": 0,$", MR_Next},
{"\"threads\": 1,$", MR_Next},
{"\"iterations\": %int,$", MR_Next},
{"\"real_time\": %float,$", MR_Next},
{"\"cpu_time\": %float,$", MR_Next},
{"\"time_unit\": \"ns\",$", MR_Next},
{"\"bar\": %float,$", MR_Next},
{"\"foo\": %float$", MR_Next},
{"}", MR_Next}});
ADD_CASES(TC_CSVOut,
{{"^\"BM_Counters_InvertedRate\",%csv_report,%float,%float$"}});
// VS2013 does not allow this function to be passed as a lambda argument
// to CHECK_BENCHMARK_RESULTS()
void CheckInvertedRate(Results const& e) {
double t = e.DurationCPUTime(); // this (and not real time) is the time used
// check that the values are within 0.1% of the expected values
CHECK_FLOAT_COUNTER_VALUE(e, "foo", EQ, t, 0.001);
CHECK_FLOAT_COUNTER_VALUE(e, "bar", EQ, t / 8192.0, 0.001);
}
CHECK_BENCHMARK_RESULTS("BM_Counters_InvertedRate", &CheckInvertedRate);
// ========================================================================= //
// ------------------------- Thread Counters Output ------------------------ //
// ========================================================================= //
void BM_Counters_Threads(benchmark::State& state) {
for (auto _ : state) {
}
state.counters["foo"] = 1;
state.counters["bar"] = 2;
}
BENCHMARK(BM_Counters_Threads)->ThreadRange(1, 8);
ADD_CASES(TC_ConsoleOut, {{"^BM_Counters_Threads/threads:%int %console_report "
"bar=%hrfloat foo=%hrfloat$"}});
ADD_CASES(TC_JSONOut,
{{"\"name\": \"BM_Counters_Threads/threads:%int\",$"},
{"\"run_name\": \"BM_Counters_Threads/threads:%int\",$", MR_Next},
{"\"run_type\": \"iteration\",$", MR_Next},
{"\"repetitions\": 0,$", MR_Next},
{"\"repetition_index\": 0,$", MR_Next},
{"\"threads\": 1,$", MR_Next},
{"\"iterations\": %int,$", MR_Next},
{"\"real_time\": %float,$", MR_Next},
{"\"cpu_time\": %float,$", MR_Next},
{"\"time_unit\": \"ns\",$", MR_Next},
{"\"bar\": %float,$", MR_Next},
{"\"foo\": %float$", MR_Next},
{"}", MR_Next}});
ADD_CASES(
TC_CSVOut,
{{"^\"BM_Counters_Threads/threads:%int\",%csv_report,%float,%float$"}});
2017-04-30 05:27:55 +08:00
// VS2013 does not allow this function to be passed as a lambda argument
// to CHECK_BENCHMARK_RESULTS()
void CheckThreads(Results const& e) {
CHECK_COUNTER_VALUE(e, int, "foo", EQ, e.NumThreads());
CHECK_COUNTER_VALUE(e, int, "bar", EQ, 2 * e.NumThreads());
2017-04-30 05:27:55 +08:00
}
CHECK_BENCHMARK_RESULTS("BM_Counters_Threads/threads:%int", &CheckThreads);
// ========================================================================= //
// ---------------------- ThreadAvg Counters Output ------------------------ //
// ========================================================================= //
void BM_Counters_AvgThreads(benchmark::State& state) {
for (auto _ : state) {
}
namespace bm = benchmark;
state.counters["foo"] = bm::Counter{1, bm::Counter::kAvgThreads};
state.counters["bar"] = bm::Counter{2, bm::Counter::kAvgThreads};
}
BENCHMARK(BM_Counters_AvgThreads)->ThreadRange(1, 8);
ADD_CASES(TC_ConsoleOut, {{"^BM_Counters_AvgThreads/threads:%int "
"%console_report bar=%hrfloat foo=%hrfloat$"}});
ADD_CASES(TC_JSONOut,
{{"\"name\": \"BM_Counters_AvgThreads/threads:%int\",$"},
{"\"run_name\": \"BM_Counters_AvgThreads/threads:%int\",$", MR_Next},
{"\"run_type\": \"iteration\",$", MR_Next},
{"\"repetitions\": 0,$", MR_Next},
{"\"repetition_index\": 0,$", MR_Next},
{"\"threads\": 1,$", MR_Next},
{"\"iterations\": %int,$", MR_Next},
{"\"real_time\": %float,$", MR_Next},
{"\"cpu_time\": %float,$", MR_Next},
{"\"time_unit\": \"ns\",$", MR_Next},
{"\"bar\": %float,$", MR_Next},
{"\"foo\": %float$", MR_Next},
{"}", MR_Next}});
ADD_CASES(
TC_CSVOut,
{{"^\"BM_Counters_AvgThreads/threads:%int\",%csv_report,%float,%float$"}});
2017-04-30 05:27:55 +08:00
// VS2013 does not allow this function to be passed as a lambda argument
// to CHECK_BENCHMARK_RESULTS()
void CheckAvgThreads(Results const& e) {
CHECK_COUNTER_VALUE(e, int, "foo", EQ, 1);
CHECK_COUNTER_VALUE(e, int, "bar", EQ, 2);
2017-04-30 05:27:55 +08:00
}
CHECK_BENCHMARK_RESULTS("BM_Counters_AvgThreads/threads:%int",
&CheckAvgThreads);
// ========================================================================= //
// ---------------------- ThreadAvg Counters Output ------------------------ //
// ========================================================================= //
void BM_Counters_AvgThreadsRate(benchmark::State& state) {
for (auto _ : state) {
// This test requires a non-zero CPU time to avoid divide-by-zero
benchmark::DoNotOptimize(state.iterations());
}
namespace bm = benchmark;
state.counters["foo"] = bm::Counter{1, bm::Counter::kAvgThreadsRate};
state.counters["bar"] = bm::Counter{2, bm::Counter::kAvgThreadsRate};
}
BENCHMARK(BM_Counters_AvgThreadsRate)->ThreadRange(1, 8);
ADD_CASES(TC_ConsoleOut, {{"^BM_Counters_AvgThreadsRate/threads:%int "
"%console_report bar=%hrfloat/s foo=%hrfloat/s$"}});
ADD_CASES(TC_JSONOut,
{{"\"name\": \"BM_Counters_AvgThreadsRate/threads:%int\",$"},
{"\"run_name\": \"BM_Counters_AvgThreadsRate/threads:%int\",$",
MR_Next},
{"\"run_type\": \"iteration\",$", MR_Next},
{"\"repetitions\": 0,$", MR_Next},
{"\"repetition_index\": 0,$", MR_Next},
{"\"threads\": 1,$", MR_Next},
{"\"iterations\": %int,$", MR_Next},
{"\"real_time\": %float,$", MR_Next},
{"\"cpu_time\": %float,$", MR_Next},
{"\"time_unit\": \"ns\",$", MR_Next},
{"\"bar\": %float,$", MR_Next},
{"\"foo\": %float$", MR_Next},
{"}", MR_Next}});
ADD_CASES(TC_CSVOut, {{"^\"BM_Counters_AvgThreadsRate/"
"threads:%int\",%csv_report,%float,%float$"}});
2017-04-30 05:27:55 +08:00
// VS2013 does not allow this function to be passed as a lambda argument
// to CHECK_BENCHMARK_RESULTS()
void CheckAvgThreadsRate(Results const& e) {
CHECK_FLOAT_COUNTER_VALUE(e, "foo", EQ, 1. / e.DurationCPUTime(), 0.001);
CHECK_FLOAT_COUNTER_VALUE(e, "bar", EQ, 2. / e.DurationCPUTime(), 0.001);
2017-04-30 05:27:55 +08:00
}
CHECK_BENCHMARK_RESULTS("BM_Counters_AvgThreadsRate/threads:%int",
&CheckAvgThreadsRate);
// ========================================================================= //
// ------------------- IterationInvariant Counters Output ------------------ //
// ========================================================================= //
void BM_Counters_IterationInvariant(benchmark::State& state) {
for (auto _ : state) {
}
namespace bm = benchmark;
state.counters["foo"] = bm::Counter{1, bm::Counter::kIsIterationInvariant};
state.counters["bar"] = bm::Counter{2, bm::Counter::kIsIterationInvariant};
}
BENCHMARK(BM_Counters_IterationInvariant);
ADD_CASES(TC_ConsoleOut, {{"^BM_Counters_IterationInvariant %console_report "
"bar=%hrfloat foo=%hrfloat$"}});
ADD_CASES(TC_JSONOut,
{{"\"name\": \"BM_Counters_IterationInvariant\",$"},
{"\"run_name\": \"BM_Counters_IterationInvariant\",$", MR_Next},
{"\"run_type\": \"iteration\",$", MR_Next},
{"\"repetitions\": 0,$", MR_Next},
{"\"repetition_index\": 0,$", MR_Next},
{"\"threads\": 1,$", MR_Next},
{"\"iterations\": %int,$", MR_Next},
{"\"real_time\": %float,$", MR_Next},
{"\"cpu_time\": %float,$", MR_Next},
{"\"time_unit\": \"ns\",$", MR_Next},
{"\"bar\": %float,$", MR_Next},
{"\"foo\": %float$", MR_Next},
{"}", MR_Next}});
ADD_CASES(TC_CSVOut,
{{"^\"BM_Counters_IterationInvariant\",%csv_report,%float,%float$"}});
// VS2013 does not allow this function to be passed as a lambda argument
// to CHECK_BENCHMARK_RESULTS()
void CheckIterationInvariant(Results const& e) {
double its = e.NumIterations();
// check that the values are within 0.1% of the expected value
CHECK_FLOAT_COUNTER_VALUE(e, "foo", EQ, its, 0.001);
CHECK_FLOAT_COUNTER_VALUE(e, "bar", EQ, 2. * its, 0.001);
}
CHECK_BENCHMARK_RESULTS("BM_Counters_IterationInvariant",
&CheckIterationInvariant);
// ========================================================================= //
// ----------------- IterationInvariantRate Counters Output ---------------- //
// ========================================================================= //
void BM_Counters_kIsIterationInvariantRate(benchmark::State& state) {
for (auto _ : state) {
// This test requires a non-zero CPU time to avoid divide-by-zero
benchmark::DoNotOptimize(state.iterations());
}
namespace bm = benchmark;
state.counters["foo"] =
bm::Counter{1, bm::Counter::kIsIterationInvariantRate};
state.counters["bar"] =
bm::Counter{2, bm::Counter::kIsRate | bm::Counter::kIsIterationInvariant};
}
BENCHMARK(BM_Counters_kIsIterationInvariantRate);
ADD_CASES(TC_ConsoleOut, {{"^BM_Counters_kIsIterationInvariantRate "
"%console_report bar=%hrfloat/s foo=%hrfloat/s$"}});
ADD_CASES(TC_JSONOut,
{{"\"name\": \"BM_Counters_kIsIterationInvariantRate\",$"},
{"\"run_name\": \"BM_Counters_kIsIterationInvariantRate\",$",
MR_Next},
{"\"run_type\": \"iteration\",$", MR_Next},
{"\"repetitions\": 0,$", MR_Next},
{"\"repetition_index\": 0,$", MR_Next},
{"\"threads\": 1,$", MR_Next},
{"\"iterations\": %int,$", MR_Next},
{"\"real_time\": %float,$", MR_Next},
{"\"cpu_time\": %float,$", MR_Next},
{"\"time_unit\": \"ns\",$", MR_Next},
{"\"bar\": %float,$", MR_Next},
{"\"foo\": %float$", MR_Next},
{"}", MR_Next}});
ADD_CASES(TC_CSVOut, {{"^\"BM_Counters_kIsIterationInvariantRate\",%csv_report,"
"%float,%float$"}});
// VS2013 does not allow this function to be passed as a lambda argument
// to CHECK_BENCHMARK_RESULTS()
void CheckIsIterationInvariantRate(Results const& e) {
double its = e.NumIterations();
double t = e.DurationCPUTime(); // this (and not real time) is the time used
// check that the values are within 0.1% of the expected values
CHECK_FLOAT_COUNTER_VALUE(e, "foo", EQ, its * 1. / t, 0.001);
CHECK_FLOAT_COUNTER_VALUE(e, "bar", EQ, its * 2. / t, 0.001);
}
CHECK_BENCHMARK_RESULTS("BM_Counters_kIsIterationInvariantRate",
&CheckIsIterationInvariantRate);
// ========================================================================= //
// ------------------- AvgIterations Counters Output ------------------ //
// ========================================================================= //
void BM_Counters_AvgIterations(benchmark::State& state) {
for (auto _ : state) {
}
namespace bm = benchmark;
state.counters["foo"] = bm::Counter{1, bm::Counter::kAvgIterations};
state.counters["bar"] = bm::Counter{2, bm::Counter::kAvgIterations};
}
BENCHMARK(BM_Counters_AvgIterations);
ADD_CASES(TC_ConsoleOut, {{"^BM_Counters_AvgIterations %console_report "
"bar=%hrfloat foo=%hrfloat$"}});
ADD_CASES(TC_JSONOut,
{{"\"name\": \"BM_Counters_AvgIterations\",$"},
{"\"run_name\": \"BM_Counters_AvgIterations\",$", MR_Next},
{"\"run_type\": \"iteration\",$", MR_Next},
{"\"repetitions\": 0,$", MR_Next},
{"\"repetition_index\": 0,$", MR_Next},
{"\"threads\": 1,$", MR_Next},
{"\"iterations\": %int,$", MR_Next},
{"\"real_time\": %float,$", MR_Next},
{"\"cpu_time\": %float,$", MR_Next},
{"\"time_unit\": \"ns\",$", MR_Next},
{"\"bar\": %float,$", MR_Next},
{"\"foo\": %float$", MR_Next},
{"}", MR_Next}});
ADD_CASES(TC_CSVOut,
{{"^\"BM_Counters_AvgIterations\",%csv_report,%float,%float$"}});
// VS2013 does not allow this function to be passed as a lambda argument
// to CHECK_BENCHMARK_RESULTS()
void CheckAvgIterations(Results const& e) {
double its = e.NumIterations();
// check that the values are within 0.1% of the expected value
CHECK_FLOAT_COUNTER_VALUE(e, "foo", EQ, 1. / its, 0.001);
CHECK_FLOAT_COUNTER_VALUE(e, "bar", EQ, 2. / its, 0.001);
}
CHECK_BENCHMARK_RESULTS("BM_Counters_AvgIterations", &CheckAvgIterations);
// ========================================================================= //
// ----------------- AvgIterationsRate Counters Output ---------------- //
// ========================================================================= //
void BM_Counters_kAvgIterationsRate(benchmark::State& state) {
for (auto _ : state) {
// This test requires a non-zero CPU time to avoid divide-by-zero
benchmark::DoNotOptimize(state.iterations());
}
namespace bm = benchmark;
state.counters["foo"] = bm::Counter{1, bm::Counter::kAvgIterationsRate};
state.counters["bar"] =
bm::Counter{2, bm::Counter::kIsRate | bm::Counter::kAvgIterations};
}
BENCHMARK(BM_Counters_kAvgIterationsRate);
ADD_CASES(TC_ConsoleOut, {{"^BM_Counters_kAvgIterationsRate "
"%console_report bar=%hrfloat/s foo=%hrfloat/s$"}});
ADD_CASES(TC_JSONOut,
{{"\"name\": \"BM_Counters_kAvgIterationsRate\",$"},
{"\"run_name\": \"BM_Counters_kAvgIterationsRate\",$", MR_Next},
{"\"run_type\": \"iteration\",$", MR_Next},
{"\"repetitions\": 0,$", MR_Next},
{"\"repetition_index\": 0,$", MR_Next},
{"\"threads\": 1,$", MR_Next},
{"\"iterations\": %int,$", MR_Next},
{"\"real_time\": %float,$", MR_Next},
{"\"cpu_time\": %float,$", MR_Next},
{"\"time_unit\": \"ns\",$", MR_Next},
{"\"bar\": %float,$", MR_Next},
{"\"foo\": %float$", MR_Next},
{"}", MR_Next}});
ADD_CASES(TC_CSVOut, {{"^\"BM_Counters_kAvgIterationsRate\",%csv_report,"
"%float,%float$"}});
// VS2013 does not allow this function to be passed as a lambda argument
// to CHECK_BENCHMARK_RESULTS()
void CheckAvgIterationsRate(Results const& e) {
double its = e.NumIterations();
double t = e.DurationCPUTime(); // this (and not real time) is the time used
// check that the values are within 0.1% of the expected values
CHECK_FLOAT_COUNTER_VALUE(e, "foo", EQ, 1. / its / t, 0.001);
CHECK_FLOAT_COUNTER_VALUE(e, "bar", EQ, 2. / its / t, 0.001);
}
CHECK_BENCHMARK_RESULTS("BM_Counters_kAvgIterationsRate",
&CheckAvgIterationsRate);
2017-04-28 02:25:20 +08:00
// ========================================================================= //
// --------------------------- TEST CASES END ------------------------------ //
// ========================================================================= //
int main(int argc, char* argv[]) { RunOutputTests(argc, argv); }