benchmark/src/complexity.cc

297 lines
10 KiB
C++
Raw Normal View History

2016-05-20 22:49:39 +08:00
// Copyright 2016 Ismael Jimenez Martinez. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Source project : https://github.com/ismaelJimenez/cpp.leastsq
2016-05-21 17:51:42 +08:00
// Adapted to be used with google benchmark
2016-05-20 22:49:39 +08:00
2016-05-27 04:39:17 +08:00
#include "benchmark/benchmark_api.h"
#include "complexity.h"
2016-05-24 02:12:54 +08:00
#include "check.h"
#include "stat.h"
#include <cmath>
#include <algorithm>
2016-05-26 05:13:19 +08:00
#include <functional>
2016-05-20 22:49:39 +08:00
2016-05-26 04:57:52 +08:00
namespace benchmark {
2016-05-20 22:49:39 +08:00
// Internal function to calculate the different scalability forms
2016-05-26 04:57:52 +08:00
std::function<double(int)> FittingCurve(BigO complexity) {
2016-05-26 04:26:57 +08:00
switch (complexity) {
2016-05-26 05:22:53 +08:00
case oN:
return [](int n) {return n; };
case oNSquared:
return [](int n) {return n*n; };
case oNCubed:
return [](int n) {return n*n*n; };
case oLogN:
return [](int n) {return log2(n); };
case oNLogN:
return [](int n) {return n * log2(n); };
case o1:
default:
return [](int) {return 1; };
2016-05-26 04:26:57 +08:00
}
}
2016-05-26 05:33:25 +08:00
// Function to return an string for the calculated complexity
2016-05-26 04:57:52 +08:00
std::string GetBigOString(BigO complexity) {
2016-05-24 02:40:41 +08:00
switch (complexity) {
2016-05-26 04:57:52 +08:00
case oN:
2016-05-26 04:26:57 +08:00
return "* N";
2016-05-26 04:57:52 +08:00
case oNSquared:
2016-05-26 04:26:57 +08:00
return "* N**2";
2016-05-26 04:57:52 +08:00
case oNCubed:
2016-05-26 04:26:57 +08:00
return "* N**3";
2016-05-26 04:57:52 +08:00
case oLogN:
2016-05-26 04:26:57 +08:00
return "* lgN";
2016-05-26 04:57:52 +08:00
case oNLogN:
2016-05-26 04:26:57 +08:00
return "* NlgN";
2016-05-26 04:57:52 +08:00
case o1:
2016-05-26 04:26:57 +08:00
return "* 1";
2016-05-24 02:40:41 +08:00
default:
2016-05-26 04:26:57 +08:00
return "";
2016-05-24 02:40:41 +08:00
}
2016-05-20 22:49:39 +08:00
}
2016-05-26 05:33:25 +08:00
// Find the coefficient for the high-order term in the running time, by
// minimizing the sum of squares of relative error, for the fitting curve
// given by the lambda expresion.
2016-05-26 04:26:57 +08:00
// - n : Vector containing the size of the benchmark tests.
// - time : Vector containing the times for the benchmark tests.
// - fitting_curve : lambda expresion (e.g. [](int n) {return n; };).
2016-05-26 05:33:25 +08:00
2016-05-25 04:25:59 +08:00
// For a deeper explanation on the algorithm logic, look the README file at
// http://github.com/ismaelJimenez/Minimal-Cpp-Least-Squared-Fit
2016-05-20 22:49:39 +08:00
2016-05-26 05:33:25 +08:00
// This interface is currently not used from the oustide, but it has been
// provided for future upgrades. If in the future it is not needed to support
// Cxx03, then all the calculations could be upgraded to use lambdas because
// they are more powerful and provide a cleaner inferface than enumerators,
// but complete implementation with lambdas will not work for Cxx03
// (e.g. lack of std::function).
2016-05-26 04:57:52 +08:00
// In case lambdas are implemented, the interface would be like :
// -> Complexity([](int n) {return n;};)
2016-05-26 05:33:25 +08:00
// and any arbitrary and valid equation would be allowed, but the option to
// calculate the best fit to the most common scalability curves will still
// be kept.
2016-05-26 04:57:52 +08:00
2016-05-26 04:26:57 +08:00
LeastSq CalculateLeastSq(const std::vector<int>& n,
const std::vector<double>& time,
std::function<double(int)> fitting_curve) {
2016-05-27 01:44:11 +08:00
double sigma_gn = 0.0;
double sigma_gn_squared = 0.0;
double sigma_time = 0.0;
double sigma_time_gn = 0.0;
2016-05-24 02:40:41 +08:00
// Calculate least square fitting parameter
for (size_t i = 0; i < n.size(); ++i) {
2016-05-26 04:26:57 +08:00
double gn_i = fitting_curve(n[i]);
2016-05-24 02:40:41 +08:00
sigma_gn += gn_i;
sigma_gn_squared += gn_i * gn_i;
sigma_time += time[i];
sigma_time_gn += time[i] * gn_i;
}
LeastSq result;
2016-05-25 04:25:59 +08:00
// Calculate complexity.
2016-05-26 04:26:57 +08:00
result.coef = sigma_time_gn / sigma_gn_squared;
2016-05-24 02:40:41 +08:00
// Calculate RMS
2016-05-27 01:44:11 +08:00
double rms = 0.0;
2016-05-24 02:40:41 +08:00
for (size_t i = 0; i < n.size(); ++i) {
2016-05-26 04:26:57 +08:00
double fit = result.coef * fitting_curve(n[i]);
2016-05-24 02:40:41 +08:00
rms += pow((time[i] - fit), 2);
}
2016-05-25 04:25:59 +08:00
// Normalized RMS by the mean of the observed values
2016-05-26 04:26:57 +08:00
double mean = sigma_time / n.size();
2016-05-25 04:25:59 +08:00
result.rms = sqrt(rms / n.size()) / mean;
2016-05-24 02:40:41 +08:00
return result;
2016-05-20 22:49:39 +08:00
}
2016-05-25 04:25:59 +08:00
// Find the coefficient for the high-order term in the running time, by
// minimizing the sum of squares of relative error.
2016-05-24 02:12:54 +08:00
// - n : Vector containing the size of the benchmark tests.
// - time : Vector containing the times for the benchmark tests.
2016-05-25 04:25:59 +08:00
// - complexity : If different than oAuto, the fitting curve will stick to
// this one. If it is oAuto, it will be calculated the best
// fitting curve.
LeastSq MinimalLeastSq(const std::vector<int>& n,
const std::vector<double>& time,
2016-05-26 04:57:52 +08:00
const BigO complexity) {
2016-05-24 02:40:41 +08:00
CHECK_EQ(n.size(), time.size());
CHECK_GE(n.size(), 2); // Do not compute fitting curve is less than two benchmark runs are given
2016-05-26 04:57:52 +08:00
CHECK_NE(complexity, oNone);
2016-05-24 02:40:41 +08:00
2016-05-26 04:26:57 +08:00
LeastSq best_fit;
2016-05-26 04:57:52 +08:00
if(complexity == oAuto) {
std::vector<BigO> fit_curves = {
oLogN, oN, oNLogN, oNSquared, oNCubed };
2016-05-24 02:40:41 +08:00
2016-05-25 04:25:59 +08:00
// Take o1 as default best fitting curve
2016-05-26 04:57:52 +08:00
best_fit = CalculateLeastSq(n, time, FittingCurve(o1));
best_fit.complexity = o1;
2016-05-24 02:40:41 +08:00
// Compute all possible fitting curves and stick to the best one
for (const auto& fit : fit_curves) {
2016-05-26 04:26:57 +08:00
LeastSq current_fit = CalculateLeastSq(n, time, FittingCurve(fit));
2016-05-25 04:25:59 +08:00
if (current_fit.rms < best_fit.rms) {
2016-05-24 02:40:41 +08:00
best_fit = current_fit;
2016-05-26 04:26:57 +08:00
best_fit.complexity = fit;
2016-05-25 04:25:59 +08:00
}
2016-05-24 02:40:41 +08:00
}
2016-05-26 04:26:57 +08:00
} else {
best_fit = CalculateLeastSq(n, time, FittingCurve(complexity));
best_fit.complexity = complexity;
2016-05-24 02:40:41 +08:00
}
2016-05-25 04:25:59 +08:00
2016-05-26 04:26:57 +08:00
return best_fit;
2016-05-25 04:25:59 +08:00
}
2016-05-26 04:57:52 +08:00
std::vector<BenchmarkReporter::Run> ComputeStats(
const std::vector<BenchmarkReporter::Run>& reports)
{
typedef BenchmarkReporter::Run Run;
std::vector<Run> results;
auto error_count = std::count_if(
reports.begin(), reports.end(),
[](Run const& run) {return run.error_occurred;});
if (reports.size() - error_count < 2) {
// We don't report aggregated data if there was a single run.
return results;
}
// Accumulators.
Stat1_d real_accumulated_time_stat;
Stat1_d cpu_accumulated_time_stat;
Stat1_d bytes_per_second_stat;
Stat1_d items_per_second_stat;
// All repetitions should be run with the same number of iterations so we
// can take this information from the first benchmark.
int64_t const run_iterations = reports.front().iterations;
// Populate the accumulators.
for (Run const& run : reports) {
CHECK_EQ(reports[0].benchmark_name, run.benchmark_name);
CHECK_EQ(run_iterations, run.iterations);
if (run.error_occurred)
continue;
real_accumulated_time_stat +=
Stat1_d(run.real_accumulated_time/run.iterations, run.iterations);
cpu_accumulated_time_stat +=
Stat1_d(run.cpu_accumulated_time/run.iterations, run.iterations);
items_per_second_stat += Stat1_d(run.items_per_second, run.iterations);
bytes_per_second_stat += Stat1_d(run.bytes_per_second, run.iterations);
}
// Get the data from the accumulator to BenchmarkReporter::Run's.
Run mean_data;
mean_data.benchmark_name = reports[0].benchmark_name + "_mean";
mean_data.iterations = run_iterations;
mean_data.real_accumulated_time = real_accumulated_time_stat.Mean() *
run_iterations;
mean_data.cpu_accumulated_time = cpu_accumulated_time_stat.Mean() *
run_iterations;
mean_data.bytes_per_second = bytes_per_second_stat.Mean();
mean_data.items_per_second = items_per_second_stat.Mean();
// Only add label to mean/stddev if it is same for all runs
mean_data.report_label = reports[0].report_label;
for (std::size_t i = 1; i < reports.size(); i++) {
if (reports[i].report_label != reports[0].report_label) {
mean_data.report_label = "";
break;
}
}
Run stddev_data;
stddev_data.benchmark_name = reports[0].benchmark_name + "_stddev";
stddev_data.report_label = mean_data.report_label;
stddev_data.iterations = 0;
stddev_data.real_accumulated_time =
real_accumulated_time_stat.StdDev();
stddev_data.cpu_accumulated_time =
cpu_accumulated_time_stat.StdDev();
stddev_data.bytes_per_second = bytes_per_second_stat.StdDev();
stddev_data.items_per_second = items_per_second_stat.StdDev();
results.push_back(mean_data);
results.push_back(stddev_data);
return results;
}
std::vector<BenchmarkReporter::Run> ComputeBigO(
const std::vector<BenchmarkReporter::Run>& reports)
{
typedef BenchmarkReporter::Run Run;
std::vector<Run> results;
if (reports.size() < 2) return results;
// Accumulators.
std::vector<int> n;
std::vector<double> real_time;
std::vector<double> cpu_time;
// Populate the accumulators.
for (const Run& run : reports) {
n.push_back(run.complexity_n);
real_time.push_back(run.real_accumulated_time/run.iterations);
cpu_time.push_back(run.cpu_accumulated_time/run.iterations);
}
LeastSq result_cpu = MinimalLeastSq(n, cpu_time, reports[0].complexity);
// result_cpu.complexity is passed as parameter to result_real because in case
// reports[0].complexity is oAuto, the noise on the measured data could make
// the best fit function of Cpu and Real differ. In order to solve this, we
// take the best fitting function for the Cpu, and apply it to Real data.
LeastSq result_real = MinimalLeastSq(n, real_time, result_cpu.complexity);
std::string benchmark_name = reports[0].benchmark_name.substr(0, reports[0].benchmark_name.find('/'));
// Get the data from the accumulator to BenchmarkReporter::Run's.
Run big_o;
big_o.benchmark_name = benchmark_name + "_BigO";
big_o.iterations = 0;
big_o.real_accumulated_time = result_real.coef;
big_o.cpu_accumulated_time = result_cpu.coef;
big_o.report_big_o = true;
big_o.complexity = result_cpu.complexity;
double multiplier = GetTimeUnitMultiplier(reports[0].time_unit);
// Only add label to mean/stddev if it is same for all runs
Run rms;
big_o.report_label = reports[0].report_label;
rms.benchmark_name = benchmark_name + "_RMS";
rms.report_label = big_o.report_label;
rms.iterations = 0;
rms.real_accumulated_time = result_real.rms / multiplier;
rms.cpu_accumulated_time = result_cpu.rms / multiplier;
rms.report_rms = true;
rms.complexity = result_cpu.complexity;
results.push_back(big_o);
results.push_back(rms);
return results;
}
2016-05-26 05:13:19 +08:00
} // end namespace benchmark