benchmark/src/minimal_leastsq.cc

113 lines
4.1 KiB
C++
Raw Normal View History

2016-05-20 22:49:39 +08:00
// Copyright 2016 Ismael Jimenez Martinez. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Source project : https://github.com/ismaelJimenez/cpp.leastsq
// Addapted to be used with google benchmark
#include "minimal_leastsq.h"
#include <math.h>
// Internal function to calculate the different scalability forms
double fittingCurve(double N, benchmark::BigO Complexity) {
if (Complexity == benchmark::O_N)
return N;
else if (Complexity == benchmark::O_N_Squared)
return pow(N, 2);
else if (Complexity == benchmark::O_N_Cubed)
return pow(N, 3);
else if (Complexity == benchmark::O_log_N)
return log2(N);
else if (Complexity == benchmark::O_N_log_N)
return N * log2(N);
return 1; // Default value for O_1
}
// Internal function to find the coefficient for the high-order term in the running time, by minimizing the sum of squares of relative error.
// - N : Vector containing the size of the benchmark tests.
// - Time : Vector containing the times for the benchmark tests.
// - Complexity : Fitting curve.
// For a deeper explanation on the algorithm logic, look the README file at http://github.com/ismaelJimenez/Minimal-Cpp-Least-Squared-Fit
2016-05-21 14:55:43 +08:00
LeastSq leastSq(const std::vector<int>& N, const std::vector<double>& Time, const benchmark::BigO Complexity) {
2016-05-20 22:49:39 +08:00
assert(N.size() == Time.size() && N.size() >= 2);
assert(Complexity != benchmark::O_None &&
Complexity != benchmark::O_Auto);
double sigmaGN = 0;
double sigmaGNSquared = 0;
double sigmaTime = 0;
double sigmaTimeGN = 0;
// Calculate least square fitting parameter
for (size_t i = 0; i < N.size(); ++i) {
double GNi = fittingCurve(N[i], Complexity);
sigmaGN += GNi;
sigmaGNSquared += GNi * GNi;
sigmaTime += Time[i];
sigmaTimeGN += Time[i] * GNi;
}
LeastSq result;
result.complexity = Complexity;
// Calculate complexity.
// O_1 is treated as an special case
if (Complexity != benchmark::O_1)
result.coef = sigmaTimeGN / sigmaGNSquared;
else
result.coef = sigmaTime / N.size();
// Calculate RMS
double rms = 0;
for (size_t i = 0; i < N.size(); ++i) {
double fit = result.coef * fittingCurve(N[i], Complexity);
rms += pow((Time[i] - fit), 2);
}
double mean = sigmaTime / N.size();
2016-05-21 14:55:43 +08:00
result.rms = sqrt(rms / N.size()) / mean; // Normalized RMS by the mean of the observed values
2016-05-20 22:49:39 +08:00
return result;
}
// Find the coefficient for the high-order term in the running time, by minimizing the sum of squares of relative error.
// - N : Vector containing the size of the benchmark tests.
// - Time : Vector containing the times for the benchmark tests.
// - Complexity : If different than O_Auto, the fitting curve will stick to this one. If it is O_Auto, it will be calculated
// the best fitting curve.
2016-05-21 14:55:43 +08:00
LeastSq minimalLeastSq(const std::vector<int>& N, const std::vector<double>& Time, const benchmark::BigO Complexity) {
2016-05-20 22:49:39 +08:00
assert(N.size() == Time.size() && N.size() >= 2); // Do not compute fitting curve is less than two benchmark runs are given
assert(Complexity != benchmark::O_None); // Check that complexity is a valid parameter.
if(Complexity == benchmark::O_Auto) {
std::vector<benchmark::BigO> fitCurves = { benchmark::O_log_N, benchmark::O_N, benchmark::O_N_log_N, benchmark::O_N_Squared, benchmark::O_N_Cubed };
LeastSq best_fit = leastSq(N, Time, benchmark::O_1); // Take O_1 as default best fitting curve
// Compute all possible fitting curves and stick to the best one
for (const auto& fit : fitCurves) {
LeastSq current_fit = leastSq(N, Time, fit);
if (current_fit.rms < best_fit.rms)
best_fit = current_fit;
}
return best_fit;
}
else
return leastSq(N, Time, Complexity);
}