advanced-java/docs/high-concurrency/redis-caching-avalanche-and-caching-penetration.md
yanglbme a7cb243259 docs: update UUID desc to fix #22, rename images
- Update UUID desc to fix #22
- Rename img to images
- Fix typo
2019-01-07 15:44:02 +08:00

3.1 KiB
Raw Blame History

面试题

了解什么是 redis 的雪崩和穿透redis 崩溃之后会怎么样?系统该如何应对这种情况?如何处理 redis 的穿透?

面试官心理分析

其实这是问到缓存必问的,因为缓存雪崩和穿透,是缓存最大的两个问题,要么不出现,一旦出现就是致命性的问题,所以面试官一定会问你。

面试题剖析

缓存雪崩

对于系统 A假设每天高峰期每秒 5000 个请求,本来缓存在高峰期可以扛住每秒 4000 个请求,但是缓存机器意外发生了全盘宕机。缓存挂了,此时 1 秒 5000 个请求全部落数据库数据库必然扛不住它会报一下警然后就挂了。此时如果没用什么特别的方案来处理这个故障DBA 很着急,重启数据库,但是数据库立马又被新的流量给打死了。

这就是缓存雪崩。

redis-caching-avalanche

大约在 3 年前,国内比较知名的一个互联网公司,曾因为缓存事故,导致雪崩,后台系统全部崩溃,事故从当天下午持续到晚上凌晨 3~4 点,公司损失了几千万。

缓存雪崩的事前事中事后的解决方案如下。

  • 事前redis 高可用,主从+哨兵redis cluster避免全盘崩溃。
  • 事中:本地 ehcache 缓存 + hystrix 限流&降级,避免 MySQL 被打死。
  • 事后redis 持久化,一旦重启,自动从磁盘上加载数据,快速恢复缓存数据。

redis-caching-avalanche-solution

用户发送一个请求,系统 A 收到请求后,先查本地 ehcache 缓存,如果没查到再查 redis。如果 ehcache 和 redis 都没有,再查数据库,将数据库中的结果,写入 ehcache 和 redis 中。

限流组件,可以设置每秒的请求,有多少能通过组件,剩余的未通过的请求,怎么办?走降级!可以返回一些默认的值,或者友情提示,或者空白的值。

好处:

  • 数据库绝对不会死,限流组件确保了每秒只有多少个请求能通过。
  • 只要数据库不死就是说对用户来说2/5 的请求都是可以被处理的。
  • 只要有 2/5 的请求可以被处理,就意味着你的系统没死,对用户来说,可能就是点击几次刷不出来页面,但是多点几次,就可以刷出来一次。

缓存穿透

对于系统A假设一秒 5000 个请求,结果其中 4000 个请求是黑客发出的恶意攻击。

黑客发出的那 4000 个攻击,缓存中查不到,每次你去数据库里查,也查不到。

举个栗子。数据库 id 是从 1 开始的,结果黑客发过来的请求 id 全部都是负数。这样的话,缓存中不会有,请求每次都“视缓存于无物”,直接查询数据库。这种恶意攻击场景的缓存穿透就会直接把数据库给打死。

redis-caching-penetration

解决方式很简单,每次系统 A 从数据库中只要没查到,就写一个空值到缓存里去,比如 set -999 UNKNOWN。这样的话,下次便能走缓存了。