mirror of
https://github.com/doocs/advanced-java.git
synced 2025-02-06 07:20:10 +08:00
362 lines
9.6 KiB
Markdown
362 lines
9.6 KiB
Markdown
# 如何限流?在工作中是怎么做的?说一下具体的实现?
|
||
- Author: [HuiFer](https://github.com/huifer)
|
||
- Description: 该文简单介绍限流相关技术以及实现
|
||
|
||
## 什么是限流
|
||
> 限流可以认为服务降级的一种,限流就是限制系统的输入和输出流量已达到保护系统的目的。一般来说系统的吞吐量是可以被测算的,为了保证系统的稳定运行,一旦达到的需要限制的阈值,就需要限制流量并采取一些措施以完成限制流量的目的。比如:延迟处理,拒绝处理,或者部分拒绝处理等等。
|
||
|
||
## 限流方法
|
||
|
||
### 计数器
|
||
|
||
#### 实现方式
|
||
- 控制单位时间内的请求数量
|
||
```java
|
||
|
||
import java.util.concurrent.atomic.AtomicInteger;
|
||
|
||
public class Counter {
|
||
/**
|
||
* 最大访问数量
|
||
*/
|
||
private final int limit = 10;
|
||
/**
|
||
* 访问时间差
|
||
*/
|
||
private final long timeout = 1000;
|
||
/**
|
||
* 请求时间
|
||
*/
|
||
private long time;
|
||
/**
|
||
* 当前计数器
|
||
*/
|
||
private AtomicInteger reqCount = new AtomicInteger(0);
|
||
|
||
public boolean limit() {
|
||
long now = System.currentTimeMillis();
|
||
if (now < time + timeout) {
|
||
// 单位时间内
|
||
reqCount.addAndGet(1);
|
||
return reqCount.get() <= limit;
|
||
} else {
|
||
// 超出单位时间
|
||
time = now;
|
||
reqCount = new AtomicInteger(0);
|
||
return true;
|
||
}
|
||
}
|
||
}
|
||
|
||
```
|
||
|
||
- 劣势
|
||
- 假设在 00:01 时发生一个请求,在 00:01-00:58 之间不在发送请求,在 00:59 时发送剩下的所有请求 `n-1` (n为限流请求数量),在下一分钟的 00:01 发送n个请求,这样在2秒钟内请求到达了 `2n - 1` 个.
|
||
- 设每分钟请求数量为60个,每秒可以处理1个请求,用户在 00:59 发送 60 个请求,在 01:00 发送 60 个请求 此时2秒钟有120个请求(每秒60个请求),远远大于了每秒钟处理数量的阈值
|
||
|
||
|
||
### 滑动窗口
|
||
#### 实现方式
|
||
- 滑动窗口是对计数器方式的改进,增加一个时间粒度的度量单位
|
||
- 把一分钟分成若干等分(6份,每份10秒), 在每一份上设置独立计数器,在 00:00-00:09 之间发生请求计数器累加1.当等分数量越大限流统计就越详细
|
||
|
||
```java
|
||
package com.example.demo1.service;
|
||
|
||
import java.util.Iterator;
|
||
import java.util.Random;
|
||
import java.util.concurrent.ConcurrentLinkedQueue;
|
||
import java.util.stream.IntStream;
|
||
|
||
public class TimeWindow {
|
||
private ConcurrentLinkedQueue<Long> queue = new ConcurrentLinkedQueue<Long>();
|
||
|
||
/**
|
||
* 间隔秒数
|
||
*/
|
||
private int seconds;
|
||
|
||
/**
|
||
* 最大限流
|
||
*/
|
||
private int max;
|
||
|
||
public TimeWindow(int max, int seconds) {
|
||
this.seconds = seconds;
|
||
this.max = max;
|
||
|
||
/**
|
||
* 永续线程执行清理queue 任务
|
||
*/
|
||
new Thread(() -> {
|
||
while (true) {
|
||
try {
|
||
// 等待 间隔秒数-1 执行清理操作
|
||
Thread.sleep((seconds - 1) * 1000L);
|
||
} catch (InterruptedException e) {
|
||
e.printStackTrace();
|
||
}
|
||
clean();
|
||
}
|
||
}).start();
|
||
|
||
}
|
||
|
||
public static void main(String[] args) throws Exception {
|
||
|
||
final TimeWindow timeWindow = new TimeWindow(10, 1);
|
||
|
||
// 测试3个线程
|
||
IntStream.range(0, 3).forEach((i) -> {
|
||
new Thread(() -> {
|
||
|
||
while (true) {
|
||
|
||
try {
|
||
Thread.sleep(new Random().nextInt(20) * 100);
|
||
} catch (InterruptedException e) {
|
||
e.printStackTrace();
|
||
}
|
||
timeWindow.take();
|
||
}
|
||
|
||
}).start();
|
||
|
||
});
|
||
|
||
}
|
||
|
||
/**
|
||
* 获取令牌,并且添加时间
|
||
*/
|
||
public void take() {
|
||
|
||
|
||
long start = System.currentTimeMillis();
|
||
try {
|
||
|
||
|
||
int size = sizeOfValid();
|
||
if (size > max) {
|
||
System.err.println("超限");
|
||
|
||
}
|
||
synchronized (queue) {
|
||
if (sizeOfValid() > max) {
|
||
System.err.println("超限");
|
||
System.err.println("queue中有 " + queue.size() + " 最大数量 " + max);
|
||
}
|
||
this.queue.offer(System.currentTimeMillis());
|
||
}
|
||
System.out.println("queue中有 " + queue.size() + " 最大数量 " + max);
|
||
|
||
}
|
||
|
||
}
|
||
|
||
|
||
public int sizeOfValid() {
|
||
Iterator<Long> it = queue.iterator();
|
||
Long ms = System.currentTimeMillis() - seconds * 1000;
|
||
int count = 0;
|
||
while (it.hasNext()) {
|
||
long t = it.next();
|
||
if (t > ms) {
|
||
// 在当前的统计时间范围内
|
||
count++;
|
||
}
|
||
}
|
||
|
||
return count;
|
||
}
|
||
|
||
|
||
/**
|
||
* 清理过期的时间
|
||
*/
|
||
public void clean() {
|
||
Long c = System.currentTimeMillis() - seconds * 1000;
|
||
|
||
Long tl = null;
|
||
while ((tl = queue.peek()) != null && tl < c) {
|
||
System.out.println("清理数据");
|
||
queue.poll();
|
||
}
|
||
}
|
||
|
||
}
|
||
|
||
```
|
||
|
||
### Leaky Bucket 漏桶
|
||
#### 实现方式
|
||
- 规定固定容量的桶,有水进入,有水流出. 对于流进的水我们无法估计进来的数量、速度,对于流出的水我们可以控制速度.
|
||
```java
|
||
public class LeakBucket {
|
||
/**
|
||
* 时间
|
||
*/
|
||
private long time;
|
||
/**
|
||
* 总量
|
||
*/
|
||
private Double total;
|
||
/**
|
||
* 水流出去的速度
|
||
*/
|
||
private Double rate;
|
||
/**
|
||
* 当前总量
|
||
*/
|
||
private Double nowSize;
|
||
|
||
|
||
public boolean limit() {
|
||
long now = System.currentTimeMillis();
|
||
nowSize = Math.max(0, (nowSize - (now - time) * rate));
|
||
time = now;
|
||
if ((nowSize + 1) < total) {
|
||
nowSize++;
|
||
return true;
|
||
} else {
|
||
return false;
|
||
}
|
||
|
||
}
|
||
}
|
||
```
|
||
|
||
### Token Bucket 令牌桶
|
||
#### 实现方式
|
||
- 规定固定容量的桶,token 以固定速度往桶内填充,当桶满时 token 不会被继续放入,每过来一个请求把 token 从桶中移除,如果桶中没有 token 不能请求
|
||
|
||
```java
|
||
public class TokenBucket {
|
||
/**
|
||
* 时间
|
||
*/
|
||
private long time;
|
||
/**
|
||
* 总量
|
||
*/
|
||
private Double total;
|
||
/**
|
||
* token 放入速度
|
||
*/
|
||
private Double rate;
|
||
/**
|
||
* 当前总量
|
||
*/
|
||
private Double nowSize;
|
||
|
||
|
||
public boolean limit() {
|
||
long now = System.currentTimeMillis();
|
||
nowSize = Math.min(total, nowSize + (now - time) * rate);
|
||
time = now;
|
||
if (nowSize < 1) {
|
||
// 桶里没有token
|
||
return false;
|
||
} else {
|
||
// 存在token
|
||
nowSize -= 1;
|
||
return true;
|
||
}
|
||
}
|
||
|
||
|
||
|
||
}
|
||
```
|
||
|
||
## 工作中的使用
|
||
### spring cloud gateway
|
||
- spring cloud gateway 默认使用redis进行限流,笔者一般只是修改修改参数属于拿来即用.并没有去从头实现上述那些算法.
|
||
```xml
|
||
<dependency>
|
||
<groupId>org.springframework.cloud</groupId>
|
||
<artifactId>spring-cloud-starter-gateway</artifactId>
|
||
</dependency>
|
||
<dependency>
|
||
<groupId>org.springframework.boot</groupId>
|
||
<artifactId>spring-boot-starter-data-redis-reactive</artifactId>
|
||
</dependency>
|
||
```
|
||
|
||
```yaml
|
||
spring:
|
||
cloud:
|
||
gateway:
|
||
routes:
|
||
- id: requestratelimiter_route
|
||
uri: lb://pigx-upms
|
||
order: 10000
|
||
predicates:
|
||
- Path=/admin/**
|
||
filters:
|
||
- name: RequestRateLimiter
|
||
args:
|
||
redis-rate-limiter.replenishRate: 1 # 令牌桶的容积
|
||
redis-rate-limiter.burstCapacity: 3 # 流速 每秒
|
||
key-resolver: "#{@remoteAddrKeyResolver}" #SPEL表达式去的对应的bean
|
||
- StripPrefix=1
|
||
```
|
||
|
||
```java
|
||
@Bean
|
||
KeyResolver remoteAddrKeyResolver() {
|
||
return exchange -> Mono.just(exchange.getRequest().getRemoteAddress().getHostName());
|
||
}
|
||
```
|
||
|
||
|
||
### sentinel
|
||
- 通过配置来控制每个url的流量
|
||
```xml
|
||
<dependency>
|
||
<groupId>com.alibaba.cloud</groupId>
|
||
<artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
|
||
</dependency>
|
||
```
|
||
```yaml
|
||
spring:
|
||
cloud:
|
||
nacos:
|
||
discovery:
|
||
server-addr: localhost:8848
|
||
sentinel:
|
||
transport:
|
||
dashboard: localhost:8080
|
||
port: 8720
|
||
datasource:
|
||
ds:
|
||
nacos:
|
||
server-addr: localhost:8848
|
||
dataId: spring-cloud-sentinel-nacos
|
||
groupId: DEFAULT_GROUP
|
||
rule-type: flow
|
||
namespace: xxxxxxxx
|
||
```
|
||
- 配置内容在nacos上进行编辑
|
||
```json
|
||
[
|
||
{
|
||
"resource": "/hello",
|
||
"limitApp": "default",
|
||
"grade": 1,
|
||
"count": 1,
|
||
"strategy": 0,
|
||
"controlBehavior": 0,
|
||
"clusterMode": false
|
||
}
|
||
]
|
||
```
|
||
- resource:资源名,即限流规则的作用对象。
|
||
- limitApp:流控针对的调用来源,若为 default 则不区分调用来源。
|
||
- grade:限流阈值类型,QPS 或线程数模式,0代表根据并发数量来限流,1代表根据QPS来进行流量控制。
|
||
- count:限流阈值
|
||
- strategy:判断的根据是资源自身,还是根据其它关联资源 (refResource),还是根据链路入口
|
||
- controlBehavior:流控效果(直接拒绝 / 排队等待 / 慢启动模式)
|
||
- clusterMode:是否为集群模式
|
||
### 总结
|
||
> sentinel和spring cloud gateway两个框架都是很好的限流框架,但是在我使用中还没有将[spring-cloud-alibaba](https://github.com/alibaba/spring-cloud-alibaba)接入到项目中进行使用,所以我会选择**spring cloud gateway**,当接入完整的或者接入Nacos项目使用setinel会有更加好的体验. |