2.3 KiB
如何从大量的 URL 中找出相同的 URL?
题目描述
给定 a、b 两个文件,各存放 50 亿个 URL,每个 URL 各占 64B,内存限制是 4G。请找出 a、b 两个文件共同的 URL。
解答思路
1. 分治策略
每个 URL 占 64B,那么 50 亿个 URL 占用的空间大小约为 320GB。
5, 000, 000, 000 _ 64B ≈ 5GB _ 64 = 320GB
由于内存大小只有 4G,因此,我们不可能一次性把所有 URL 加载到内存中处理。对于这种类型的题目,一般采用分治策略,即:把一个文件中的 URL 按照某个特征划分为多个小文件,使得每个小文件大小不超过 4G,这样就可以把这个小文件读到内存中进行处理了。
思路如下:
首先遍历文件 a,对遍历到的 URL 求 hash(URL) % 1000
,根据计算结果把遍历到的 URL 存储到 a0, a1, a2, ..., a999,这样每个大小约为 300MB。使用同样的方法遍历文件 b,把文件 b 中的 URL 分别存储到文件 b0, b1, b2, ..., b999 中。这样处理过后,所有可能相同的 URL 都在对应的小文件中,即 a0 对应 b0, ..., a999 对应 b999,不对应的小文件不可能有相同的 URL。那么接下来,我们只需要求出这 1000 对小文件中相同的 URL 就好了。
接着遍历 ai( i∈[0,999]
),把 URL 存储到一个 HashSet 集合中。然后遍历 bi 中每个 URL,看在 HashSet 集合中是否存在,若存在,说明这就是共同的 URL,可以把这个 URL 保存到一个单独的文件中。
2. 前缀树
一般而言,URL 的长度差距不会不大,而且前面几个字符,绝大部分相同。这种情况下,非常适合使用字典树(trie tree) 这种数据结构来进行存储,降低存储成本的同时,提高查询效率。
由 @ChunelFeng 反馈。#212
方法总结
分治策略
- 分而治之,进行哈希取余;
- 对每个子文件进行 HashSet 统计。
前缀树
- 利用字符串的公共前缀来降低存储成本,提高查询效率。