mirror of
https://github.com/doocs/advanced-java.git
synced 2024-12-28 04:10:08 +08:00
343 lines
13 KiB
Markdown
343 lines
13 KiB
Markdown
## 面试题
|
||
|
||
一般实现分布式锁都有哪些方式?使用 Redis 如何设计分布式锁?使用 zk 来设计分布式锁可以吗?这两种分布式锁的实现方式哪种效率比较高?
|
||
|
||
## 面试官心理分析
|
||
|
||
其实一般问问题,都是这么问的,先问问你 zk,然后其实是要过渡到 zk 相关的一些问题里去,比如分布式锁。因为在分布式系统开发中,分布式锁的使用场景还是很常见的。
|
||
|
||
## 面试题剖析
|
||
|
||
### Redis 分布式锁
|
||
|
||
官方叫做 `RedLock` 算法,是 Redis 官方支持的分布式锁算法。
|
||
|
||
这个分布式锁有 3 个重要的考量点:
|
||
|
||
- 互斥(只能有一个客户端获取锁)
|
||
- 不能死锁
|
||
- 容错(只要大部分 Redis 节点创建了这把锁就可以)
|
||
|
||
#### Redis 最普通的分布式锁
|
||
|
||
第一个最普通的实现方式,就是在 Redis 里使用 `SET key value [EX seconds] [PX milliseconds] NX` 创建一个 key,这样就算加锁。其中:
|
||
|
||
- `NX`:表示只有 `key` 不存在的时候才会设置成功,如果此时 redis 中存在这个 `key`,那么设置失败,返回 `nil`。
|
||
- `EX seconds`:设置 `key` 的过期时间,精确到秒级。意思是 `seconds` 秒后锁自动释放,别人创建的时候如果发现已经有了就不能加锁了。
|
||
- `PX milliseconds`:同样是设置 `key` 的过期时间,精确到毫秒级。
|
||
|
||
比如执行以下命令:
|
||
|
||
```r
|
||
SET resource_name my_random_value PX 30000 NX
|
||
```
|
||
|
||
释放锁就是删除 key ,但是一般可以用 `lua` 脚本删除,判断 value 一样才删除:
|
||
|
||
```lua
|
||
-- 删除锁的时候,找到 key 对应的 value,跟自己传过去的 value 做比较,如果是一样的才删除。
|
||
if redis.call("get",KEYS[1]) == ARGV[1] then
|
||
return redis.call("del",KEYS[1])
|
||
else
|
||
return 0
|
||
end
|
||
```
|
||
|
||
为啥要用 `random_value` 随机值呢?因为如果某个客户端获取到了锁,但是阻塞了很长时间才执行完,比如说超过了 30s,此时可能已经自动释放锁了,此时可能别的客户端已经获取到了这个锁,要是你这个时候直接删除 key 的话会有问题,所以得用随机值加上面的 `lua` 脚本来释放锁。
|
||
|
||
但是这样是肯定不行的。因为如果是普通的 Redis 单实例,那就是单点故障。或者是 Redis 普通主从,那 Redis 主从异步复制,如果主节点挂了(key 就没有了),key 还没同步到从节点,此时从节点切换为主节点,别人就可以 set key,从而拿到锁。
|
||
|
||
#### RedLock 算法
|
||
|
||
这个场景是假设有一个 Redis cluster,有 5 个 Redis master 实例。然后执行如下步骤获取一把锁:
|
||
|
||
1. 获取当前时间戳,单位是毫秒;
|
||
2. 跟上面类似,轮流尝试在每个 master 节点上创建锁,超时时间较短,一般就几十毫秒(客户端为了获取锁而使用的超时时间比自动释放锁的总时间要小。例如,如果自动释放时间是 10 秒,那么超时时间可能在 `5~50` 毫秒范围内);
|
||
3. 尝试在**大多数节点**上建立一个锁,比如 5 个节点就要求是 3 个节点 `n / 2 + 1` ;
|
||
4. 客户端计算建立好锁的时间,如果建立锁的时间小于超时时间,就算建立成功了;
|
||
5. 要是锁建立失败了,那么就依次之前建立过的锁删除;
|
||
6. 只要别人建立了一把分布式锁,你就得**不断轮询去尝试获取锁**。
|
||
|
||
![redis-redlock](./images/redis-redlock.png)
|
||
|
||
[Redis 官方](https://redis.io/)给出了以上两种基于 Redis 实现分布式锁的方法,详细说明可以查看:https://redis.io/topics/distlock 。
|
||
|
||
### zk 分布式锁
|
||
|
||
zk 分布式锁,其实可以做的比较简单,就是某个节点尝试创建临时 znode,此时创建成功了就获取了这个锁;这个时候别的客户端来创建锁会失败,只能**注册个监听器**监听这个锁。释放锁就是删除这个 znode,一旦释放掉就会通知客户端,然后有一个等待着的客户端就可以再次重新加锁。
|
||
|
||
```java
|
||
/**
|
||
* ZooKeeperSession
|
||
*/
|
||
public class ZooKeeperSession {
|
||
|
||
private static CountDownLatch connectedSemaphore = new CountDownLatch(1);
|
||
|
||
private ZooKeeper zookeeper;
|
||
private CountDownLatch latch;
|
||
|
||
public ZooKeeperSession() {
|
||
try {
|
||
this.zookeeper = new ZooKeeper("192.168.31.187:2181,192.168.31.19:2181,192.168.31.227:2181", 50000, new ZooKeeperWatcher());
|
||
try {
|
||
connectedSemaphore.await();
|
||
} catch (InterruptedException e) {
|
||
e.printStackTrace();
|
||
}
|
||
|
||
System.out.println("ZooKeeper session established......");
|
||
} catch (Exception e) {
|
||
e.printStackTrace();
|
||
}
|
||
}
|
||
|
||
/**
|
||
* 获取分布式锁
|
||
*
|
||
* @param productId
|
||
*/
|
||
public Boolean acquireDistributedLock(Long productId) {
|
||
String path = "/product-lock-" + productId;
|
||
|
||
try {
|
||
zookeeper.create(path, "".getBytes(), Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL);
|
||
return true;
|
||
} catch (Exception e) {
|
||
while (true) {
|
||
try {
|
||
// 相当于是给node注册一个监听器,去看看这个监听器是否存在
|
||
Stat stat = zk.exists(path, true);
|
||
|
||
if (stat != null) {
|
||
this.latch = new CountDownLatch(1);
|
||
this.latch.await(waitTime, TimeUnit.MILLISECONDS);
|
||
this.latch = null;
|
||
}
|
||
zookeeper.create(path, "".getBytes(), Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL);
|
||
return true;
|
||
} catch (Exception ee) {
|
||
continue;
|
||
}
|
||
}
|
||
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/**
|
||
* 释放掉一个分布式锁
|
||
*
|
||
* @param productId
|
||
*/
|
||
public void releaseDistributedLock(Long productId) {
|
||
String path = "/product-lock-" + productId;
|
||
try {
|
||
zookeeper.delete(path, -1);
|
||
System.out.println("release the lock for product[id=" + productId + "]......");
|
||
} catch (Exception e) {
|
||
e.printStackTrace();
|
||
}
|
||
}
|
||
|
||
/**
|
||
* 建立 zk session 的 watcher
|
||
*/
|
||
private class ZooKeeperWatcher implements Watcher {
|
||
|
||
public void process(WatchedEvent event) {
|
||
System.out.println("Receive watched event: " + event.getState());
|
||
|
||
if (KeeperState.SyncConnected == event.getState()) {
|
||
connectedSemaphore.countDown();
|
||
}
|
||
|
||
if (this.latch != null) {
|
||
this.latch.countDown();
|
||
}
|
||
}
|
||
|
||
}
|
||
|
||
/**
|
||
* 封装单例的静态内部类
|
||
*/
|
||
private static class Singleton {
|
||
|
||
private static ZooKeeperSession instance;
|
||
|
||
static {
|
||
instance = new ZooKeeperSession();
|
||
}
|
||
|
||
public static ZooKeeperSession getInstance() {
|
||
return instance;
|
||
}
|
||
|
||
}
|
||
|
||
/**
|
||
* 获取单例
|
||
*
|
||
* @return
|
||
*/
|
||
public static ZooKeeperSession getInstance() {
|
||
return Singleton.getInstance();
|
||
}
|
||
|
||
/**
|
||
* 初始化单例的便捷方法
|
||
*/
|
||
public static void init() {
|
||
getInstance();
|
||
}
|
||
|
||
}
|
||
```
|
||
|
||
也可以采用另一种方式,创建临时顺序节点:
|
||
|
||
如果有一把锁,被多个人给竞争,此时多个人会排队,第一个拿到锁的人会执行,然后释放锁;后面的每个人都会去监听**排在自己前面**的那个人创建的 node 上,一旦某个人释放了锁,排在自己后面的人就会被 ZooKeeper 给通知,一旦被通知了之后,就 ok 了,自己就获取到了锁,就可以执行代码了。
|
||
|
||
```java
|
||
public class ZooKeeperDistributedLock implements Watcher {
|
||
|
||
private ZooKeeper zk;
|
||
private String locksRoot = "/locks";
|
||
private String productId;
|
||
private String waitNode;
|
||
private String lockNode;
|
||
private CountDownLatch latch;
|
||
private CountDownLatch connectedLatch = new CountDownLatch(1);
|
||
private int sessionTimeout = 30000;
|
||
|
||
public ZooKeeperDistributedLock(String productId) {
|
||
this.productId = productId;
|
||
try {
|
||
String address = "192.168.31.187:2181,192.168.31.19:2181,192.168.31.227:2181";
|
||
zk = new ZooKeeper(address, sessionTimeout, this);
|
||
connectedLatch.await();
|
||
} catch (IOException e) {
|
||
throw new LockException(e);
|
||
} catch (KeeperException e) {
|
||
throw new LockException(e);
|
||
} catch (InterruptedException e) {
|
||
throw new LockException(e);
|
||
}
|
||
}
|
||
|
||
public void process(WatchedEvent event) {
|
||
if (event.getState() == KeeperState.SyncConnected) {
|
||
connectedLatch.countDown();
|
||
return;
|
||
}
|
||
|
||
if (this.latch != null) {
|
||
this.latch.countDown();
|
||
}
|
||
}
|
||
|
||
public void acquireDistributedLock() {
|
||
try {
|
||
if (this.tryLock()) {
|
||
return;
|
||
} else {
|
||
waitForLock(waitNode, sessionTimeout);
|
||
}
|
||
} catch (KeeperException e) {
|
||
throw new LockException(e);
|
||
} catch (InterruptedException e) {
|
||
throw new LockException(e);
|
||
}
|
||
}
|
||
|
||
public boolean tryLock() {
|
||
try {
|
||
// 传入进去的locksRoot + “/” + productId
|
||
// 假设productId代表了一个商品id,比如说1
|
||
// locksRoot = locks
|
||
// /locks/10000000000,/locks/10000000001,/locks/10000000002
|
||
lockNode = zk.create(locksRoot + "/" + productId, new byte[0], ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL);
|
||
|
||
// 看看刚创建的节点是不是最小的节点
|
||
// locks:10000000000,10000000001,10000000002
|
||
List<String> locks = zk.getChildren(locksRoot, false);
|
||
Collections.sort(locks);
|
||
|
||
if (lockNode.equals(locksRoot + "/" + locks.get(0))) {
|
||
// 如果是最小的节点,则表示取得锁
|
||
return true;
|
||
}
|
||
|
||
// 如果不是最小的节点,找到比自己小1的节点
|
||
int previousLockIndex = -1;
|
||
for (int i = 0; i < locks.size(); i++) {
|
||
if (lockNode.equals(locksRoot + "/" +locks.get(i))){
|
||
previousLockIndex = i - 1;
|
||
break;
|
||
}
|
||
}
|
||
|
||
this.waitNode = locks.get(previousLockIndex);
|
||
} catch (KeeperException e) {
|
||
throw new LockException(e);
|
||
} catch (InterruptedException e) {
|
||
throw new LockException(e);
|
||
}
|
||
return false;
|
||
}
|
||
|
||
private boolean waitForLock(String waitNode, long waitTime) throws InterruptedException, KeeperException {
|
||
Stat stat = zk.exists(locksRoot + "/" + waitNode, true);
|
||
if (stat != null) {
|
||
this.latch = new CountDownLatch(1);
|
||
this.latch.await(waitTime, TimeUnit.MILLISECONDS);
|
||
this.latch = null;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
public void unlock() {
|
||
try {
|
||
// 删除/locks/10000000000节点
|
||
// 删除/locks/10000000001节点
|
||
System.out.println("unlock " + lockNode);
|
||
zk.delete(lockNode, -1);
|
||
lockNode = null;
|
||
zk.close();
|
||
} catch (InterruptedException e) {
|
||
e.printStackTrace();
|
||
} catch (KeeperException e) {
|
||
e.printStackTrace();
|
||
}
|
||
}
|
||
|
||
public class LockException extends RuntimeException {
|
||
private static final long serialVersionUID = 1L;
|
||
|
||
public LockException(String e) {
|
||
super(e);
|
||
}
|
||
|
||
public LockException(Exception e) {
|
||
super(e);
|
||
}
|
||
}
|
||
}
|
||
```
|
||
|
||
但是,使用 zk 临时节点会存在另一个问题:由于 zk 依靠 session 定期的心跳来维持客户端,如果客户端进入长时间的 GC,可能会导致 zk 认为客户端宕机而释放锁,让其他的客户端获取锁,但是客户端在 GC 恢复后,会认为自己还持有锁,从而可能出现多个客户端同时获取到锁的情形。[#209](https://github.com/doocs/advanced-java/issues/209)
|
||
|
||
针对这种情况,可以通过 JVM 调优,尽量避免长时间 GC 的情况发生。
|
||
|
||
### redis 分布式锁和 zk 分布式锁的对比
|
||
|
||
- redis 分布式锁,其实**需要自己不断去尝试获取锁**,比较消耗性能。
|
||
- zk 分布式锁,获取不到锁,注册个监听器即可,不需要不断主动尝试获取锁,性能开销较小。
|
||
|
||
另外一点就是,如果是 Redis 获取锁的那个客户端 出现 bug 挂了,那么只能等待超时时间之后才能释放锁;而 zk 的话,因为创建的是临时 znode,只要客户端挂了,znode 就没了,此时就自动释放锁。
|
||
|
||
Redis 分布式锁大家没发现好麻烦吗?遍历上锁,计算时间等等......zk 的分布式锁语义清晰实现简单。
|
||
|
||
所以先不分析太多的东西,就说这两点,我个人实践认为 zk 的分布式锁比 Redis 的分布式锁牢靠、而且模型简单易用。
|