docs: add hystrix-thread-pool-isolation.md

Hystrix 线程池技术实现资源隔离
Redis 小修改
This commit is contained in:
yanglbme 2018-12-26 20:40:31 +08:00
parent 429a6b63cb
commit b2f9168a57
6 changed files with 121 additions and 4 deletions

View File

@ -82,6 +82,7 @@
## 高可用架构
- [Hystrix 介绍](/docs/high-availability/hystrix-introduction.md)
- [电商网站详情页系统架构](/docs/high-availability/e-commerce-website-detail-page-architecture.md)
- [Hystrix 线程池技术实现资源隔离](/docs/high-availability/hystrix-thread-pool-isolation.md)
### 高可用系统
- 如何设计一个高可用系统?

View File

@ -0,0 +1,116 @@
## 基于 Hystrix 线程池技术实现资源隔离
上一讲提到,如果从 Nginx 开始缓存都失效了Nginx 会直接通过缓存服务调用商品服务获取最新商品数据(我们基于电商项目做个讨论),有可能出现调用延时而把缓存服务资源耗尽的情况。这里,我们就来说说,怎么通过 Hystrix 线程池技术实现资源隔离。
资源隔离,就是说,你如果要把对某一个依赖服务的所有调用请求,全部隔离在同一份资源池内,不会去用其它资源了,这就叫资源隔离。哪怕对这个依赖服务,比如说商品服务,现在同时发起的调用量已经到了 1000但是线程池内就 10 个线程,最多就只会用这 10 个线程去执行,不会说,对商品服务的请求,因为接口调用延时,将 tomcat 内部所有的线程资源全部耗尽。
Hystrix 进行资源隔离,其实是提供了一个抽象,叫做 command。这也是 Hystrix 最最基本的资源隔离技术。
### 利用 HystrixCommand 获取单条数据
我们通过将调用商品服务的操作封装在 HystrixCommand 中,限定一个 key比如下面的 `GetProductInfoCommandGroup`,在这里我们可以简单认为这是一个线程池,每次调用商品服务,就只会用该线程池中的资源,不会再去用其它线程资源了。
```java
public class GetProductInfoCommand extends HystrixCommand<ProductInfo> {
private Long productId;
public GetProductInfoCommand(Long productId) {
super(HystrixCommandGroupKey.Factory.asKey("GetProductInfoCommandGroup"));
this.productId = productId;
}
@Override
protected ProductInfo run() {
String url = "http://localhost:8081/getProductInfo?productId=" + productId;
// 调用商品服务接口
String response = HttpClientUtils.sendGetRequest(url);
return JSONObject.parseObject(response, ProductInfo.class);
}
}
```
我们在缓存服务接口中,根据 productId 创建 command 并执行,获取到商品数据。
```java
@RequestMapping("/getProductInfo")
@ResponseBody
public String getProductInfo(Long productId) {
HystrixCommand<ProductInfo> getProductInfoCommand = new GetProductInfoCommand(productId);
// 通过command执行获取最新商品数据
ProductInfo productInfo = getProductInfoCommand.execute();
System.out.println(productInfo);
return "success";
}
```
上面执行的是 execute() 方法,其实是同步的。也可以对 command 调用 queue() 方法,它仅仅是将 command 放入线程池的一个等待队列,就立即返回,拿到一个 Future 对象,后面可以继续做其它一些事情,然后过一段时间对 Future 调用 get() 方法获取数据。这是异步的。
### 利用 HystrixObservableCommand 批量获取数据
只要是获取商品数据,全部都绑定到同一个线程池里面去,我们通过 HystrixObservableCommand 的一个线程去执行,而在这个线程里面,批量把多个 productId 的 productInfo 拉回来。
```java
public class GetProductInfosCommand extends HystrixObservableCommand<ProductInfo> {
private String[] productIds;
public GetProductInfosCommand(String[] productIds) {
// 还是绑定在同一个线程池
super(HystrixCommandGroupKey.Factory.asKey("GetProductInfoGroup"));
this.productIds = productIds;
}
@Override
protected Observable<ProductInfo> construct() {
return Observable.unsafeCreate((Observable.OnSubscribe<ProductInfo>) subscriber -> {
for (String productId : productIds) {
// 批量获取商品数据
String url = "http://localhost:8081/getProductInfo?productId=" + productId;
String response = HttpClientUtils.sendGetRequest(url);
ProductInfo productInfo = JSONObject.parseObject(response, ProductInfo.class);
subscriber.onNext(productInfo);
}
subscriber.onCompleted();
}).subscribeOn(Schedulers.io());
}
}
```
在缓存服务接口中,根据传来的 id 列表,比如是以 `,` 分隔的 id 串,通过上面的 HystrixObservableCommand执行 Hystrix 的一些 API 方法,获取到所有商品数据。
```java
public String getProductInfos(String productIds) {
String[] productIdArray = productIds.split(",");
HystrixObservableCommand<ProductInfo> getProductInfosCommand = new GetProductInfosCommand(productIdArray);
Observable<ProductInfo> observable = getProductInfosCommand.observe();
observable.subscribe(new Observer<ProductInfo>() {
@Override
public void onCompleted() {
System.out.println("获取完了所有的商品数据");
}
@Override
public void onError(Throwable e) {
e.printStackTrace();
}
/**
* 获取完一条数据,就回调一次这个方法
* @param productInfo
*/
@Override
public void onNext(ProductInfo productInfo) {
System.out.println(productInfo);
}
});
return "success";
}
```
我们回过头来,看看 Hystrix 线程池技术是如何实现资源隔离的。
![hystrix-thread-pool-isolation](/img/hystrix-thread-pool-isolation.png)
从 Nginx 开始,缓存都失效了,那么 Nginx 通过缓存服务去调用商品服务。缓存服务默认的线程大小是 10 个,最多就只有 10 个线程去调用商品服务的接口。即使商品服务接口故障了,最多就只有 10 个线程会 hang 死在调用商品服务接口的路上,缓存服务的 tomcat 内其它的线程还是可以用来调用其它的服务,干其它的事情。

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 KiB

View File

@ -22,7 +22,7 @@
另外更新缓存的代价有时候是很高的。是不是说,每次修改数据库的时候,都一定要将其对应的缓存更新一份?也许有的场景是这样,但是对于**比较复杂的缓存数据计算的场景**,就不是这样了。如果你频繁修改一个缓存涉及的多个表,缓存也频繁更新。但是问题在于,**这个缓存到底会不会被频繁访问到?**
举个栗子,一个缓存涉及的表的字段,在 1 分钟内就修改了 20 次,或者是 100 次,那么缓存更新 20 次100 次;但是这个缓存在 1 分钟内只被读取了 1 次,有**大量的冷数据**。实际上,如果你只是删除缓存的话,那么在 1 分钟内,这个缓存不过就重新计算一次而已,开销大幅度降低。**用到缓存才去算缓存。**
举个栗子,一个缓存涉及的表的字段,在 1 分钟内就修改了 20 次,或者是 100 次,那么缓存更新 20 次100 次;但是这个缓存在 1 分钟内只被读取了 1 次,有**大量的冷数据**。实际上,如果你只是删除缓存的话,那么在 1 分钟内,这个缓存不过就重新计算一次而已,开销大幅度降低。**用到缓存才去算缓存。**
其实删除缓存,而不是更新缓存,就是一个 lazy 计算的思想,不要每次都重新做复杂的计算,不管它会不会用到,而是让它到需要被使用的时候再重新计算。像 mybatishibernate都有懒加载思想。查询一个部门部门带了一个员工的 list没有必要说每次查询部门都里面的 1000 个员工的数据也同时查出来啊。80% 的情况,查这个部门,就只是要访问这个部门的信息就可以了。先查部门,同时要访问里面的员工,那么这个时候只有在你要访问里面的员工的时候,才会去数据库里面查询 1000 个员工。

View File

@ -27,7 +27,7 @@ redis 过期策略是:**定期删除+惰性删除**。
但是问题是,定期删除可能会导致很多过期 key 到了时间并没有被删除掉,那咋整呢?所以就是惰性删除了。这就是说,在你获取某个 key 的时候redis 会检查一下 ,这个 key 如果设置了过期时间那么是否过期了?如果过期了此时就会删除,不会给你返回任何东西。
> 获取key 的时候,如果此时 key 已经过期,就删除,不会返回任何东西。
> 获取 key 的时候,如果此时 key 已经过期,就删除,不会返回任何东西。
但是实际上这还是有问题的,如果定期删除漏掉了很多过期 key然后你也没及时去查也就没走惰性删除此时会怎么样如果大量过期 key 堆积在内存里,导致 redis 内存块耗尽了,咋整?
@ -36,9 +36,9 @@ redis 过期策略是:**定期删除+惰性删除**。
### 内存淘汰机制
redis 内存淘汰机制有以下几个:
- noeviction: 当内存不足以容纳新写入数据时,新写入操作会报错,这个一般没人用吧,实在是太恶心了。
- **allkeys-lru**:当内存不足以容纳新写入数据时,在**键空间**中,移除最近最少使用的 key这个是**最常用**的)
- **allkeys-lru**:当内存不足以容纳新写入数据时,在**键空间**中,移除最近最少使用的 key这个是**最常用**的)
- allkeys-random当内存不足以容纳新写入数据时在**键空间**中,随机移除某个 key这个一般没人用吧为啥要随机肯定是把最近最少使用的 key 给干掉啊。
- volatile-lru当内存不足以容纳新写入数据时在**设置了过期时间的键空间**中,移除最近最少使用的 key这个一般不太合适
- volatile-lru当内存不足以容纳新写入数据时在**设置了过期时间的键空间**中,移除最近最少使用的 key这个一般不太合适
- volatile-random当内存不足以容纳新写入数据时在**设置了过期时间的键空间**中,**随机移除**某个 key。
- volatile-ttl当内存不足以容纳新写入数据时在**设置了过期时间的键空间**中,有**更早过期时间**的 key 优先移除。

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 KiB