mirror of
https://github.com/doocs/advanced-java.git
synced 2025-01-27 06:30:13 +08:00
docs: update docs description in ElasticSearch
* Update docs description in ElasticSearch * Welcome to join the WeChat Group, see https://github.com/doocs/intro/issues/6 for details.
This commit is contained in:
parent
71928b7fd8
commit
a774169b78
@ -19,7 +19,7 @@ es 中存储数据的**基本单位是索引**,比如说你现在要在 es 中
|
|||||||
index -> type -> mapping -> document -> field。
|
index -> type -> mapping -> document -> field。
|
||||||
```
|
```
|
||||||
|
|
||||||
这样吧,为了做个更直白的介绍,我在这里做个类比。
|
这样吧,为了做个更直白的介绍,我在这里做个类比。但是切记,不要划等号,类比只是为了便于理解。
|
||||||
|
|
||||||
index 相当于 mysql 里的一张表。而 type 没法跟 mysql 里去对比,一个 index 里可以有多个 type,每个 type 的字段都是差不多的,但是有一些略微的差别。假设有一个 index,是订单 index,里面专门是放订单数据的。就好比说你在 mysql 中建表,有些订单是实物商品的订单,比如一件衣服、一双鞋子;有些订单是虚拟商品的订单,比如游戏点卡,话费充值。就两种订单大部分字段是一样的,但是少部分字段可能有略微的一些差别。
|
index 相当于 mysql 里的一张表。而 type 没法跟 mysql 里去对比,一个 index 里可以有多个 type,每个 type 的字段都是差不多的,但是有一些略微的差别。假设有一个 index,是订单 index,里面专门是放订单数据的。就好比说你在 mysql 中建表,有些订单是实物商品的订单,比如一件衣服、一双鞋子;有些订单是虚拟商品的订单,比如游戏点卡,话费充值。就两种订单大部分字段是一样的,但是少部分字段可能有略微的一些差别。
|
||||||
|
|
||||||
|
@ -10,7 +10,7 @@ es 在数据量很大的情况下(数十亿级别)如何提高查询效率
|
|||||||
说实话,es 性能优化是没有什么银弹的,啥意思呢?就是**不要期待着随手调一个参数,就可以万能的应对所有的性能慢的场景**。也许有的场景是你换个参数,或者调整一下语法,就可以搞定,但是绝对不是所有场景都可以这样。
|
说实话,es 性能优化是没有什么银弹的,啥意思呢?就是**不要期待着随手调一个参数,就可以万能的应对所有的性能慢的场景**。也许有的场景是你换个参数,或者调整一下语法,就可以搞定,但是绝对不是所有场景都可以这样。
|
||||||
|
|
||||||
### 性能优化的杀手锏——filesystem cache
|
### 性能优化的杀手锏——filesystem cache
|
||||||
你往 es 里写的数据,实际上都写到磁盘文件里去了,查询的时候,操作系统会将磁盘文件里的数据自动缓存到 `filesystem cache` 里面去。
|
你往 es 里写的数据,实际上都写到磁盘文件里去了,**查询的时候**,操作系统会将磁盘文件里的数据自动缓存到 `filesystem cache` 里面去。
|
||||||
|
|
||||||
![es-search-process](/images/es-search-process.png)
|
![es-search-process](/images/es-search-process.png)
|
||||||
|
|
||||||
@ -24,11 +24,11 @@ es 的搜索引擎严重依赖于底层的 `filesystem cache`,你如果给 `fi
|
|||||||
|
|
||||||
根据我们自己的生产环境实践经验,最佳的情况下,是仅仅在 es 中就存少量的数据,就是你要**用来搜索的那些索引**,如果内存留给 `filesystem cache` 的是 100G,那么你就将索引数据控制在 `100G` 以内,这样的话,你的数据几乎全部走内存来搜索,性能非常之高,一般可以在 1 秒以内。
|
根据我们自己的生产环境实践经验,最佳的情况下,是仅仅在 es 中就存少量的数据,就是你要**用来搜索的那些索引**,如果内存留给 `filesystem cache` 的是 100G,那么你就将索引数据控制在 `100G` 以内,这样的话,你的数据几乎全部走内存来搜索,性能非常之高,一般可以在 1 秒以内。
|
||||||
|
|
||||||
比如说你现在有一行数据。`id,name,age ....` 30 个字段。但是你现在搜索,只需要根据 `id,name,age` 三个字段来搜索。如果你傻乎乎往 es 里写入一行数据所有的字段,就会导致说 `90%` 的数据是不用来搜索的,结果硬是占据了 es 机器上的 `filesystem cache` 的空间,单条数据的数据量越大,就会导致 `filesystem cahce` 能缓存的数据就越少。其实,仅仅写入 es 中要用来检索的**少数几个字段**就可以了,比如说就写入es `id,name,age` 三个字段,然后你可以把其他的字段数据存在 mysql/hbase 里,我们一般是建议用 `es + hbase` 这么一个架构。
|
比如说你现在有一行数据。`id,name,age ....` 30 个字段。但是你现在搜索,只需要根据 `id,name,age` 三个字段来搜索。如果你傻乎乎往 es 里写入一行数据所有的字段,就会导致说 `90%` 的数据是不用来搜索的,结果硬是占据了 es 机器上的 `filesystem cache` 的空间,单条数据的数据量越大,就会导致 `filesystem cahce` 能缓存的数据就越少。其实,仅仅写入 es 中要用来检索的**少数几个字段**就可以了,比如说就写入 es `id,name,age` 三个字段,然后你可以把其他的字段数据存在 mysql/hbase 里,我们一般是建议用 `es + hbase` 这么一个架构。
|
||||||
|
|
||||||
hbase 的特点是**适用于海量数据的在线存储**,就是对 hbase 可以写入海量数据,但是不要做复杂的搜索,做很简单的一些根据 id 或者范围进行查询的这么一个操作就可以了。从 es 中根据 name 和 age 去搜索,拿到的结果可能就 20 个 `doc id`,然后根据 `doc id` 到 hbase 里去查询每个 `doc id` 对应的**完整的数据**,给查出来,再返回给前端。
|
hbase 的特点是**适用于海量数据的在线存储**,就是对 hbase 可以写入海量数据,但是不要做复杂的搜索,做很简单的一些根据 id 或者范围进行查询的这么一个操作就可以了。从 es 中根据 name 和 age 去搜索,拿到的结果可能就 20 个 `doc id`,然后根据 `doc id` 到 hbase 里去查询每个 `doc id` 对应的**完整的数据**,给查出来,再返回给前端。
|
||||||
|
|
||||||
写入 es 的数据最好小于等于,或者是略微大于 es 的 filesystem cache 的内存容量。然后你从 es 检索可能就花费 20ms,然后再根据 es 返回的 id 去 hbase 里查询,查 20 条数据,可能也就耗费个 30ms,可能你原来那么玩儿,1T 数据都放es,会每次查询都是 5~10s,现在可能性能就会很高,每次查询就是 50ms。
|
写入 es 的数据最好小于等于,或者是略微大于 es 的 filesystem cache 的内存容量。然后你从 es 检索可能就花费 20ms,然后再根据 es 返回的 id 去 hbase 里查询,查 20 条数据,可能也就耗费个 30ms,可能你原来那么玩儿,1T 数据都放 es,会每次查询都是 5~10s,现在可能性能就会很高,每次查询就是 50ms。
|
||||||
|
|
||||||
### 数据预热
|
### 数据预热
|
||||||
假如说,哪怕是你就按照上述的方案去做了,es 集群中每个机器写入的数据量还是超过了 `filesystem cache` 一倍,比如说你写入一台机器 60G 数据,结果 `filesystem cache` 就 30G,还是有 30G 数据留在了磁盘上。
|
假如说,哪怕是你就按照上述的方案去做了,es 集群中每个机器写入的数据量还是超过了 `filesystem cache` 一倍,比如说你写入一台机器 60G 数据,结果 `filesystem cache` 就 30G,还是有 30G 数据留在了磁盘上。
|
||||||
@ -39,7 +39,7 @@ hbase 的特点是**适用于海量数据的在线存储**,就是对 hbase 可
|
|||||||
|
|
||||||
或者是电商,你可以将平时查看最多的一些商品,比如说 iphone 8,热数据提前后台搞个程序,每隔 1 分钟自己主动访问一次,刷到 `filesystem cache` 里去。
|
或者是电商,你可以将平时查看最多的一些商品,比如说 iphone 8,热数据提前后台搞个程序,每隔 1 分钟自己主动访问一次,刷到 `filesystem cache` 里去。
|
||||||
|
|
||||||
对于那些你觉得比较热的,经常会有人访问的数据,最好**做一个专门的缓存预热子系统**,就是对热数据每隔一段时间,就提前访问一下,让数据进入 `filesystem cache` 里面去。这样下次别人访问的时候,一定性能会好一些。
|
对于那些你觉得比较热的、经常会有人访问的数据,最好**做一个专门的缓存预热子系统**,就是对热数据每隔一段时间,就提前访问一下,让数据进入 `filesystem cache` 里面去。这样下次别人访问的时候,性能一定会好很多。
|
||||||
|
|
||||||
### 冷热分离
|
### 冷热分离
|
||||||
es 可以做类似于 mysql 的水平拆分,就是说将大量的访问很少、频率很低的数据,单独写一个索引,然后将访问很频繁的热数据单独写一个索引。最好是将**冷数据写入一个索引中,然后热数据写入另外一个索引中**,这样可以确保热数据在被预热之后,尽量都让他们留在 `filesystem os cache` 里,**别让冷数据给冲刷掉**。
|
es 可以做类似于 mysql 的水平拆分,就是说将大量的访问很少、频率很低的数据,单独写一个索引,然后将访问很频繁的热数据单独写一个索引。最好是将**冷数据写入一个索引中,然后热数据写入另外一个索引中**,这样可以确保热数据在被预热之后,尽量都让他们留在 `filesystem os cache` 里,**别让冷数据给冲刷掉**。
|
||||||
@ -51,14 +51,14 @@ es 可以做类似于 mysql 的水平拆分,就是说将大量的访问很少
|
|||||||
|
|
||||||
最好是先在 Java 系统里就完成关联,将关联好的数据直接写入 es 中。搜索的时候,就不需要利用 es 的搜索语法来完成 join 之类的关联搜索了。
|
最好是先在 Java 系统里就完成关联,将关联好的数据直接写入 es 中。搜索的时候,就不需要利用 es 的搜索语法来完成 join 之类的关联搜索了。
|
||||||
|
|
||||||
document 模型设计是非常重要的,很多操作,不要在搜索的时候才想去执行各种复杂的乱七八糟的操作。es 能支持的操作就是那么多,不要考虑用 es 做一些它不好操作的事情。如果真的有那种操作,尽量在 document 模型设计的时候,写入的时候就完成。另外对于一些太复杂的操作,比如 join/nested/parent-child 搜索都要尽量避免,性能都很差的。
|
document 模型设计是非常重要的,很多操作,不要在搜索的时候才想去执行各种复杂的乱七八糟的操作。es 能支持的操作就那么多,不要考虑用 es 做一些它不好操作的事情。如果真的有那种操作,尽量在 document 模型设计的时候,写入的时候就完成。另外对于一些太复杂的操作,比如 join/nested/parent-child 搜索都要尽量避免,性能都很差的。
|
||||||
|
|
||||||
### 分页性能优化
|
### 分页性能优化
|
||||||
es 的分页是较坑的,为啥呢?举个例子吧,假如你每页是 10 条数据,你现在要查询第 100 页,实际上是会把每个 shard 上存储的前 1000 条数据都查到一个协调节点上,如果你有个 5 个 shard,那么就有 5000 条数据,接着协调节点对这 5000 条数据进行一些合并、处理,再获取到最终第 100 页的 10 条数据。
|
es 的分页是较坑的,为啥呢?举个例子吧,假如你每页是 10 条数据,你现在要查询第 100 页,实际上是会把每个 shard 上存储的前 1000 条数据都查到一个协调节点上,如果你有个 5 个 shard,那么就有 5000 条数据,接着协调节点对这 5000 条数据进行一些合并、处理,再获取到最终第 100 页的 10 条数据。
|
||||||
|
|
||||||
分布式的,你要查第 100 页的 10 条数据,不可能说从 5 个 shard,每个 shard 就查 2 条数据?最后到协调节点合并成 10 条数据?你**必须**得从每个 shard 都查 1000 条数据过来,然后根据你的需求进行排序、筛选等等操作,最后再次分页,拿到里面第 100 页的数据。你翻页的时候,翻的越深,每个 shard 返回的数据就越多,而且协调节点处理的时间越长,非常坑爹。所以用 es 做分页的时候,你会发现越翻到后面,就越是慢。
|
分布式的,你要查第 100 页的 10 条数据,不可能说从 5 个 shard,每个 shard 就查 2 条数据,最后到协调节点合并成 10 条数据吧?你**必须**得从每个 shard 都查 1000 条数据过来,然后根据你的需求进行排序、筛选等等操作,最后再次分页,拿到里面第 100 页的数据。你翻页的时候,翻的越深,每个 shard 返回的数据就越多,而且协调节点处理的时间越长,非常坑爹。所以用 es 做分页的时候,你会发现越翻到后面,就越是慢。
|
||||||
|
|
||||||
我们之前也是遇到过这个问题,用 es 作分页,前几页就几十毫秒,翻到 10 页或者几十页的时候,基本上就要 5~10 秒 才能查出来一页数据了。
|
我们之前也是遇到过这个问题,用 es 作分页,前几页就几十毫秒,翻到 10 页或者几十页的时候,基本上就要 5~10 秒才能查出来一页数据了。
|
||||||
|
|
||||||
有什么解决方案吗?
|
有什么解决方案吗?
|
||||||
#### 不允许深度分页(默认深度分页性能很差)
|
#### 不允许深度分页(默认深度分页性能很差)
|
||||||
|
@ -38,6 +38,7 @@ j2ee特别牛
|
|||||||
- query phase:每个 shard 将自己的搜索结果(其实就是一些 `doc id`)返回给协调节点,由协调节点进行数据的合并、排序、分页等操作,产出最终结果。
|
- query phase:每个 shard 将自己的搜索结果(其实就是一些 `doc id`)返回给协调节点,由协调节点进行数据的合并、排序、分页等操作,产出最终结果。
|
||||||
- fetch phase:接着由协调节点根据 `doc id` 去各个节点上**拉取实际**的 `document` 数据,最终返回给客户端。
|
- fetch phase:接着由协调节点根据 `doc id` 去各个节点上**拉取实际**的 `document` 数据,最终返回给客户端。
|
||||||
|
|
||||||
|
> 写请求是写入 primary shard,然后同步给所有的 replica shard;读请求可以从 primary shard 或 replica shard 读取,采用的是随机轮询算法。
|
||||||
|
|
||||||
### 写数据底层原理
|
### 写数据底层原理
|
||||||
|
|
||||||
@ -49,13 +50,13 @@ j2ee特别牛
|
|||||||
|
|
||||||
每隔 1 秒钟,es 将 buffer 中的数据写入一个**新的** `segment file`,每秒钟会产生一个**新的磁盘文件** `segment file`,这个 `segment file` 中就存储最近 1 秒内 buffer 中写入的数据。
|
每隔 1 秒钟,es 将 buffer 中的数据写入一个**新的** `segment file`,每秒钟会产生一个**新的磁盘文件** `segment file`,这个 `segment file` 中就存储最近 1 秒内 buffer 中写入的数据。
|
||||||
|
|
||||||
但是如果 buffer 里面此时没有数据,那当然不会执行 refresh 操作,如果buffer里面有数据,默认 1 秒钟执行一次 refresh 操作,刷入一个新的 segment file 中。
|
但是如果 buffer 里面此时没有数据,那当然不会执行 refresh 操作,如果 buffer 里面有数据,默认 1 秒钟执行一次 refresh 操作,刷入一个新的 segment file 中。
|
||||||
|
|
||||||
操作系统里面,磁盘文件其实都有一个东西,叫做 `os cache`,即操作系统缓存,就是说数据写入磁盘文件之前,会先进入 `os cache`,先进入操作系统级别的一个内存缓存中去。只要 `buffer` 中的数据被 refresh 操作刷入 `os cache`中,这个数据就可以被搜索到了。
|
操作系统里面,磁盘文件其实都有一个东西,叫做 `os cache`,即操作系统缓存,就是说数据写入磁盘文件之前,会先进入 `os cache`,先进入操作系统级别的一个内存缓存中去。只要 `buffer` 中的数据被 refresh 操作刷入 `os cache`中,这个数据就可以被搜索到了。
|
||||||
|
|
||||||
为什么叫 es 是**准实时**的? `NRT`,全称 `near real-time`。默认是每隔 1 秒 refresh 一次的,所以 es 是准实时的,因为写入的数据 1 秒之后才能被看到。可以通过 es 的 `restful api` 或者 `java api`,**手动**执行一次 refresh 操作,就是手动将 buffer 中的数据刷入 `os cache`中,让数据立马就可以被搜索到。只要数据被输入 `os cache` 中,buffer 就会被清空了,因为不需要保留 buffer 了,数据在 translog 里面已经持久化到磁盘去一份了。
|
为什么叫 es 是**准实时**的? `NRT`,全称 `near real-time`。默认是每隔 1 秒 refresh 一次的,所以 es 是准实时的,因为写入的数据 1 秒之后才能被看到。可以通过 es 的 `restful api` 或者 `java api`,**手动**执行一次 refresh 操作,就是手动将 buffer 中的数据刷入 `os cache`中,让数据立马就可以被搜索到。只要数据被输入 `os cache` 中,buffer 就会被清空了,因为不需要保留 buffer 了,数据在 translog 里面已经持久化到磁盘去一份了。
|
||||||
|
|
||||||
重复上面的步骤,新的数据不断进入 buffer 和 translog,不断将 `buffer` 数据写入一个又一个新的 `segment file` 中去,每次 `refresh` 完 buffer 清空,translog保留。随着这个过程推进,translog 会变得越来越大。当 translog 达到一定长度的时候,就会触发 `commit` 操作。
|
重复上面的步骤,新的数据不断进入 buffer 和 translog,不断将 `buffer` 数据写入一个又一个新的 `segment file` 中去,每次 `refresh` 完 buffer 清空,translog 保留。随着这个过程推进,translog 会变得越来越大。当 translog 达到一定长度的时候,就会触发 `commit` 操作。
|
||||||
|
|
||||||
commit 操作发生第一步,就是将 buffer 中现有数据 `refresh` 到 `os cache` 中去,清空 buffer。然后,将一个 `commit point` 写入磁盘文件,里面标识着这个 `commit point` 对应的所有 `segment file`,同时强行将 `os cache` 中目前所有的数据都 `fsync` 到磁盘文件中去。最后**清空** 现有 translog 日志文件,重启一个 translog,此时 commit 操作完成。
|
commit 操作发生第一步,就是将 buffer 中现有数据 `refresh` 到 `os cache` 中去,清空 buffer。然后,将一个 `commit point` 写入磁盘文件,里面标识着这个 `commit point` 对应的所有 `segment file`,同时强行将 `os cache` 中目前所有的数据都 `fsync` 到磁盘文件中去。最后**清空** 现有 translog 日志文件,重启一个 translog,此时 commit 操作完成。
|
||||||
|
|
||||||
@ -67,6 +68,8 @@ translog 其实也是先写入 os cache 的,默认每隔 5 秒刷一次到磁
|
|||||||
|
|
||||||
实际上你在这里,如果面试官没有问你 es 丢数据的问题,你可以在这里给面试官炫一把,你说,其实 es 第一是准实时的,数据写入 1 秒后可以搜索到;可能会丢失数据的。有 5 秒的数据,停留在 buffer、translog os cache、segment file os cache 中,而不在磁盘上,此时如果宕机,会导致 5 秒的**数据丢失**。
|
实际上你在这里,如果面试官没有问你 es 丢数据的问题,你可以在这里给面试官炫一把,你说,其实 es 第一是准实时的,数据写入 1 秒后可以搜索到;可能会丢失数据的。有 5 秒的数据,停留在 buffer、translog os cache、segment file os cache 中,而不在磁盘上,此时如果宕机,会导致 5 秒的**数据丢失**。
|
||||||
|
|
||||||
|
**总结一下**,数据先写入内存 buffer,然后每隔 1s,将数据 refresh 到 os cache,到了 os cache 数据就能被搜索到(所以我们才说 es 从写入到能被搜索到,中间有 1s 的延迟)。每隔 5s,将数据写入 translog 文件(这样如果机器宕机,内存数据全没,最多会有 5s 的数据丢失),translog 大到一定程度,或者默认每隔 30mins,会触发 commit 操作,将缓冲区的数据都 flush 到 segment file 磁盘文件中。
|
||||||
|
|
||||||
> 数据写入 segment file 之后,同时就建立好了倒排索引。
|
> 数据写入 segment file 之后,同时就建立好了倒排索引。
|
||||||
|
|
||||||
### 删除/更新数据底层原理
|
### 删除/更新数据底层原理
|
||||||
@ -74,7 +77,7 @@ translog 其实也是先写入 os cache 的,默认每隔 5 秒刷一次到磁
|
|||||||
|
|
||||||
如果是更新操作,就是将原来的 doc 标识为 `deleted` 状态,然后新写入一条数据。
|
如果是更新操作,就是将原来的 doc 标识为 `deleted` 状态,然后新写入一条数据。
|
||||||
|
|
||||||
buffer 每次 refresh 一次,就会产生一个 `segment file`,所以默认情况下是 1 秒钟一个 `segment file`,这样下来 `segment file` 会越来越多,此时会定期执行 merge。每次 merge 的时候,会将多个 `segment file` 合并成一个,同时这里会将标识为 `deleted` 的 doc 给**物理删除掉**,然后将新的 `segment file` 写入磁盘,这里会写一个 `commit point`,标识所有新的 `segment file`,然后打开 `segment file` 供搜索使用,同时删除旧的 `segment file`。
|
buffer 每 refresh 一次,就会产生一个 `segment file`,所以默认情况下是 1 秒钟一个 `segment file`,这样下来 `segment file` 会越来越多,此时会定期执行 merge。每次 merge 的时候,会将多个 `segment file` 合并成一个,同时这里会将标识为 `deleted` 的 doc 给**物理删除掉**,然后将新的 `segment file` 写入磁盘,这里会写一个 `commit point`,标识所有新的 `segment file`,然后打开 `segment file` 供搜索使用,同时删除旧的 `segment file`。
|
||||||
|
|
||||||
### 底层 lucene
|
### 底层 lucene
|
||||||
简单来说,lucene 就是一个 jar 包,里面包含了封装好的各种建立倒排索引的算法代码。我们用 Java 开发的时候,引入 lucene jar,然后基于 lucene 的 api 去开发就可以了。
|
简单来说,lucene 就是一个 jar 包,里面包含了封装好的各种建立倒排索引的算法代码。我们用 Java 开发的时候,引入 lucene jar,然后基于 lucene 的 api 去开发就可以了。
|
||||||
@ -121,4 +124,6 @@ buffer 每次 refresh 一次,就会产生一个 `segment file`,所以默认
|
|||||||
要注意倒排索引的两个重要细节:
|
要注意倒排索引的两个重要细节:
|
||||||
|
|
||||||
- 倒排索引中的所有词项对应一个或多个文档;
|
- 倒排索引中的所有词项对应一个或多个文档;
|
||||||
- 倒排索引中的词项**根据字典顺序升序排列**。
|
- 倒排索引中的词项**根据字典顺序升序排列**
|
||||||
|
|
||||||
|
> 上面只是一个简单的栗子,并没有严格按照字典顺序升序排列。
|
Loading…
Reference in New Issue
Block a user