From 819cffbe66b070181b419b6f86f347f4d7d7e26a Mon Sep 17 00:00:00 2001
From: yanglbme <szuyanglb@outlook.com>
Date: Fri, 30 Nov 2018 22:52:53 +0800
Subject: [PATCH] docs(database): add database-shard-global-id-generate.md
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit

分库分表之后,id主键如何处理?snowflake算法搞定
---
 README.md                                     |   2 +-
 .../database-shard-global-id-generate.md      | 160 ++++++++++++++++++
 2 files changed, 161 insertions(+), 1 deletion(-)
 create mode 100644 docs/high-concurrency/database-shard-global-id-generate.md

diff --git a/README.md b/README.md
index 2085864..c4a6b69 100644
--- a/README.md
+++ b/README.md
@@ -70,7 +70,7 @@
 - [为什么要分库分表(设计高并发系统的时候,数据库层面该如何设计)?用过哪些分库分表中间件?不同的分库分表中间件都有什么优点和缺点?你们具体是如何对数据库如何进行垂直拆分或水平拆分的?](/docs/high-concurrency/database-shard.md)
 - [现在有一个未分库分表的系统,未来要分库分表,如何设计才可以让系统从未分库分表动态切换到分库分表上?](/docs/high-concurrency/database-shard-method.md)
 - [如何设计可以动态扩容缩容的分库分表方案?](/docs/high-concurrency/database-shard-dynamic-expand.md)
-- 分库分表之后,id 主键如何处理?
+- [分库分表之后,id 主键如何处理?](/docs/high-concurrency/database-shard-global-id-generate.md)
 
 ### 读写分离
 - 如何实现 MySQL 的读写分离?
diff --git a/docs/high-concurrency/database-shard-global-id-generate.md b/docs/high-concurrency/database-shard-global-id-generate.md
new file mode 100644
index 0000000..772893d
--- /dev/null
+++ b/docs/high-concurrency/database-shard-global-id-generate.md
@@ -0,0 +1,160 @@
+## 面试题
+分库分表之后,id 主键如何处理?
+
+## 面试官心理分析
+其实这是分库分表之后你必然要面对的一个问题,就是 id 咋生成?因为要是分成多个表之后,每个表都是从 1 开始累加,那肯定不对啊,需要一个**全局唯一**的 id 来支持。所以这都是你实际生产环境中必须考虑的问题。
+
+## 面试题剖析
+### 数据库自增 id
+这个就是说你的系统里每次得到一个 id,都是往一个库的一个表里插入一条没什么业务含义的数据,然后获取一个数据库自增的一个 id。拿到这个 id 之后再往对应的分库分表里去写入。
+
+这个方案的好处就是方便简单,谁都会用;**缺点就是单库生成**自增 id,要是高并发的话,就会有瓶颈的;如果你硬是要改进一下,那么就专门开一个服务出来,这个服务每次就拿到当前 id 最大值,然后自己递增几个 id,一次性返回一批 id,然后再把当前最大 id 值修改成递增几个 id 之后的一个值;但是**无论如何都是基于单个数据库**。
+
+**适合的场景**:你分库分表就俩原因,要不就是单库并发太高,要不就是单库数据量太大;除非是你**并发不高,但是数据量太大**导致的分库分表扩容,你可以用这个方案,因为可能每秒最高并发最多就几百,那么就走单独的一个库和表生成自增主键即可。
+
+### uuid
+好处就是本地生成,不要基于数据库来了;不好之处就是,uuid 太长了,**作为主键性能太差**了,不适合用于主键。
+
+适合的场景:如果你是要随机生成个什么文件名了,编号之类的,你可以用uuid,但是作为主键是不能用uuid的。
+
+```java
+UUID.randomUUID().toString().replace(“-”, “”) -> sfsdf23423rr234sfdaf
+```
+
+### 获取系统当前时间
+这个就是获取当前时间即可,但是问题是,**并发很高的时候**,比如一秒并发几千,**会有重复的情况**,这个是肯定不合适的。基本就不用考虑了。
+
+适合的场景:一般如果用这个方案,是将当前时间跟很多其他的业务字段拼接起来,作为一个id,如果业务上你觉得可以接受,那么也是可以的。你可以将别的业务字段值跟当前时间拼接起来,组成一个全局唯一的编号。
+
+### snowflake 算法
+snowflake 算法是 twitter 开源的分布式 id 生成算法,就是把一个 64 位的 long 型的 id,1 个bit是不用的,用其中的 41 bit 作为毫秒数,用 10 bit 作为工作机器 id,12 bit 作为序列号。
+- 1 bit:不用,为啥呢?因为二进制里第一个 bit 为如果是 1,那么都是负数,但是我们生成的 id 都是正数,所以第一个 bit 统一都是 0。
+- 41 bit:表示的是时间戳,单位是毫秒。41 bit 可以表示的数字多达 `2^41 - 1`,也就是可以标识 `2^41 - 1` 个毫秒值,换算成年就是表示69年的时间。
+- 10 bit:记录工作机器 id,代表的是这个服务最多可以部署在 2^10台机器上哪,也就是1024台机器。但是 10 bit 里 5 个 bit 代表机房 id,5 个 bit 代表机器 id。意思就是最多代表 `2^5`个机房(32个机房),每个机房里可以代表 `2^5` 个机器(32台机器)。
+- 12 bit:这个是用来记录同一个毫秒内产生的不同 id,12 bit 可以代表的最大正整数是 `2^12 - 1 = 4096`,也就是说可以用这个 12 bit 代表的数字来区分**同一个毫秒内**的 4096 个不同的 id。
+
+```
+0 | 0001100 10100010 10111110 10001001 01011100 00 | 10001 | 1 1001 | 0000 00000000
+```
+
+```java
+public class IdWorker {
+
+    private long workerId;
+    private long datacenterId;
+    private long sequence;
+
+    public IdWorker(long workerId, long datacenterId, long sequence) {
+        // sanity check for workerId
+        // 这儿不就检查了一下,要求就是你传递进来的机房id和机器id不能超过32,不能小于0
+        if (workerId > maxWorkerId || workerId < 0) {
+            throw new IllegalArgumentException(
+                    String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
+        }
+        if (datacenterId > maxDatacenterId || datacenterId < 0) {
+            throw new IllegalArgumentException(
+                    String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
+        }
+        System.out.printf(
+                "worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",
+                timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId);
+
+        this.workerId = workerId;
+        this.datacenterId = datacenterId;
+        this.sequence = sequence;
+    }
+
+    private long twepoch = 1288834974657L;
+
+    private long workerIdBits = 5L;
+    private long datacenterIdBits = 5L;
+
+    // 这个是二进制运算,就是 5 bit最多只能有31个数字,也就是说机器id最多只能是32以内
+    private long maxWorkerId = -1L ^ (-1L << workerIdBits);
+
+    // 这个是一个意思,就是 5 bit最多只能有31个数字,机房id最多只能是32以内
+    private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
+    private long sequenceBits = 12L;
+
+    private long workerIdShift = sequenceBits;
+    private long datacenterIdShift = sequenceBits + workerIdBits;
+    private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
+    private long sequenceMask = -1L ^ (-1L << sequenceBits);
+
+    private long lastTimestamp = -1L;
+
+    public long getWorkerId() {
+        return workerId;
+    }
+
+    public long getDatacenterId() {
+        return datacenterId;
+    }
+
+    public long getTimestamp() {
+        return System.currentTimeMillis();
+    }
+
+    public synchronized long nextId() {
+        // 这儿就是获取当前时间戳,单位是毫秒
+        long timestamp = timeGen();
+
+        if (timestamp < lastTimestamp) {
+            System.err.printf("clock is moving backwards.  Rejecting requests until %d.", lastTimestamp);
+            throw new RuntimeException(String.format(
+                    "Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
+        }
+
+        if (lastTimestamp == timestamp) {
+            // 这个意思是说一个毫秒内最多只能有4096个数字
+            // 无论你传递多少进来,这个位运算保证始终就是在4096这个范围内,避免你自己传递个sequence超过了4096这个范围
+            sequence = (sequence + 1) & sequenceMask;
+            if (sequence == 0) {
+                timestamp = tilNextMillis(lastTimestamp);
+            }
+        } else {
+            sequence = 0;
+        }
+
+        // 这儿记录一下最近一次生成id的时间戳,单位是毫秒
+        lastTimestamp = timestamp;
+
+        // 这儿就是将时间戳左移,放到 41 bit那儿;
+        // 将机房 id左移放到 5 bit那儿;
+        // 将机器id左移放到5 bit那儿;将序号放最后12 bit;
+        // 最后拼接起来成一个 64 bit的二进制数字,转换成 10 进制就是个 long 型
+        return ((timestamp - twepoch) << timestampLeftShift) | (datacenterId << datacenterIdShift)
+                | (workerId << workerIdShift) | sequence;
+    }
+
+    private long tilNextMillis(long lastTimestamp) {
+        long timestamp = timeGen();
+        while (timestamp <= lastTimestamp) {
+            timestamp = timeGen();
+        }
+        return timestamp;
+    }
+
+    private long timeGen() {
+        return System.currentTimeMillis();
+    }
+
+    // ---------------测试---------------
+    public static void main(String[] args) {
+        IdWorker worker = new IdWorker(1, 1, 1);
+        for (int i = 0; i < 30; i++) {
+            System.out.println(worker.nextId());
+        }
+    }
+
+}
+
+```
+
+怎么说呢,大概这个意思吧,就是说 41 bit 是当前毫秒单位的一个时间戳,就这意思;然后 5 bit 是你传递进来的一个机房 id(但是最大只能是32以内),5 bit 是你传递进来的机器 id(但是最大只能是32以内),剩下的那个 12 bit序列号,就是如果跟你上次生成 id 的时间还在一个毫秒内,那么会把顺序给你累加,最多在 4096 个序号以内。
+
+所以你自己利用这个工具类,自己搞一个服务,然后对每个机房的每个机器都初始化这么一个东西,刚开始这个机房的这个机器的序号就是 0。然后每次接收到一个请求,说这个机房的这个机器要生成一个 id,你就找到对应的 Worker 生成。
+
+利用这个 snowflake 算法,你可以开发自己公司的服务,甚至对于机房 id 和机器 id,反正给你预留了5 bit + 5 bit,你换成别的有业务含义的东西也可以的。
+
+这个 snowflake 算法相对来说还是比较靠谱的,所以你要真是搞分布式 id 生成,如果是高并发啥的,那么用这个应该性能比较好,一般每秒几万并发的场景,也足够你用了。
\ No newline at end of file