From 7dc94e2751004c68772aa9ab74efbd98c03b2984 Mon Sep 17 00:00:00 2001 From: yanglbme Date: Sat, 17 Nov 2018 17:24:15 +0800 Subject: [PATCH] docs(redis): add redis-persistence.md --- docs/high-concurrency/redis-persistence.md | 39 ++++++++++++++++++++++ 1 file changed, 39 insertions(+) diff --git a/docs/high-concurrency/redis-persistence.md b/docs/high-concurrency/redis-persistence.md index 2c3d3e4..0165330 100644 --- a/docs/high-concurrency/redis-persistence.md +++ b/docs/high-concurrency/redis-persistence.md @@ -9,3 +9,42 @@ redis 如果仅仅只是将数据缓存在内存里面,如果 redis 宕机了 这个其实一样,针对的都是 redis 的生产环境可能遇到的一些问题,就是 redis 要是挂了再重启,内存里的数据不就全丢了?能不能重启的时候把数据给恢复了? ## 面试题剖析 +持久化主要是做灾难恢复、数据恢复,也可以归类到高可用的一个环节中去,比如你 redis 整个挂了,然后 redis 就不可用了,你要做的事情就是让 redis 变得可用,尽快变得可用。 + +重启 redis,尽快让它堆外提供服务,如果没做数据备份,这时候 redis 启动了,也不可用啊,数据都没了。 + +很可能说,大量的请求过来,缓存全部无法命中,在 redis 里根本找不到数据,这个时候就死定了,出现**缓存雪崩**问题。所有请求没有在 redis 命中,就会去 mysql 数据库这种数据源头中去找,一下子 mysql 承接高并发,然后就挂了... + +如果你把 redis 持久化做好,备份和恢复方案做到企业级的程度,那么即使你的 redis 故障了,也可以通过备份数据,快速恢复,一旦恢复立即对外提供服务。 + +### redis 持久化的两种方式 +- RDB:RDB 持久化机制,是对 redis 中的数据执行**周期性**的持久化。 +- AOF:AOF 机制对每条写入命令作为日志,以 `append-only` 的模式写入一个日志文件中,在 redis 重启的时候,可以通过**回放** AOF 日志中的写入指令来重新构建整个数据集。 + +通过 RDB 或 AOF,都可以将 redis 内存中的数据给持久化到磁盘上面来,然后可以将这些数据备份到别的地方去,比如说阿里云等云服务。 + +如果 redis 挂了,服务器上的内存和磁盘上的数据都丢了,可以从云服务上拷贝回来之前的数据,放到指定的目录中,然后重新启动 redis,redis 就会自动根据持久化数据文件中的数据,去恢复内存中的数据,继续对外提供服务。 + +如果同时使用 RDB 和 AOF 两种持久化机制,那么在 redis 重启的时候,会使用 **AOF** 来重新构建数据,因为 AOF 中的**数据更加完整**。 + +#### RDB 优缺点 +- RDB会生成多个数据文件,每个数据文件都代表了某一个时刻中 redis 的数据,这种多个数据文件的方式,**非常适合做冷备**,可以将这种完整的数据文件发送到一些远程的安全存储上去,比如说 Amazon 的 S3 云服务上去,在国内可以是阿里云的 ODPS 分布式存储上,以预定好的备份策略来定期备份redis中的数据。 +- RDB 对 redis 对外提供的读写服务,影响非常小,可以让 redis **保持高性能**,因为 redis 主进程只需要 fork 一个子进程,让子进程执行磁盘 IO 操作来进行 RDB 持久化即可。 +- 相对于 AOF 持久化机制来说,直接基于 RDB 数据文件来重启和恢复 redis 进程,更加快速。 + +- 如果想要在 redis 故障时,尽可能少的丢失数据,那么 RDB 没有 AOF 好。一般来说,RDB 数据快照文件,都是每隔 5 分钟,或者更长时间生成一次,这个时候就得接受一旦 redis 进程宕机,那么会丢失最近 5 分钟的数据。 +- RDB 每次在 fork 子进程来执行 RDB 快照数据文件生成的时候,如果数据文件特别大,可能会导致对客户端提供的服务暂停数毫秒,或者甚至数秒。 + +#### AOF 优缺点 +- AOF 可以更好的保护数据不丢失,一般 AOF 会每隔 1 秒,通过一个后台线程执行一次`fsync`操作,最多丢失 1 秒钟的数据。 +- AOF 日志文件以 `append-only` 模式写入,所以没有任何磁盘寻址的开销,写入性能非常高,而且文件不容易破损,即使文件尾部破损,也很容易修复。 +- AOF 日志文件即使过大的时候,出现后台重写操作,也不会影响客户端的读写。因为在 `rewrite` log 的时候,会对其中的指导进行压缩,创建出一份需要恢复数据的最小日志出来。再创建新日志文件的时候,老的日志文件还是照常写入。当新的 merge 后的日志文件 ready 的时候,再交换新老日志文件即可。 +- AOF 日志文件的命令通过非常可读的方式进行记录,这个特性非常**适合做灾难性的误删除的紧急恢复**。比如某人不小心用 `flushall` 命令清空了所有数据,只要这个时候后台 `rewrite` 还没有发生,那么就可以立即拷贝 AOF 文件,将最后一条 `flushall` 命令给删了,然后再将该 `AOF` 文件放回去,就可以通过恢复机制,自动恢复所有数据。 +- 对于同一份数据来说,AOF 日志文件通常比 RDB 数据快照文件更大。 +- AOF 开启后,支持的写 QPS 会比 RDB 支持的写 QPS 低,因为 AOF 一般会配置成每秒 `fsync` 一次日志文件,当然,每秒一次 `fsync`,性能也还是很高的。(如果实时写入,那么 QPS 会大降,redis 性能会大大降低) +- 以前 AOF 发生过 bug,就是通过 AOF 记录的日志,进行数据恢复的时候,没有恢复一模一样的数据出来。所以说,类似 AOF 这种较为复杂的基于命令日志/merge/回放的方式,比基于 RDB 每次持久化一份完整的数据快照文件的方式,更加脆弱一些,容易有 bug。不过 AOF 就是为了避免 rewrite 过程导致的 bug,因此每次 rewrite 并不是基于旧的指令日志进行 merge 的,而是**基于当时内存中的数据进行指令的重新构建**,这样健壮性会好很多。 + +### RDB和AOF到底该如何选择 +- 不要仅仅使用 RDB,因为那样会导致你丢失很多数据 +- 也不要仅仅使用 AOF,因为那样有两个问题,第一,你通过 AOF 做冷备,没有 RDB 做冷备,来的恢复速度更快; 第二,RDB 每次简单粗暴生成数据快照,更加健壮,可以避免 AOF 这种复杂的备份和恢复机制的 bug。 +- redis 支持同时开启开启两种持久化方式,我们可以综合使用 AOF 和 RDB 两种持久化机制,用 AOF 来保证数据不丢失,作为数据恢复的第一选择; 用 RDB 来做不同程度的冷备,在 AOF 文件都丢失或损坏不可用的时候,还可以使用 RDB 来进行快速的数据恢复。 \ No newline at end of file