# 第二部分:分布式数据 > 一个成功的技术,现实的优先级必须高于公关,你可以糊弄别人,但糊弄不了自然规律。 > > ——罗杰斯委员会报告(1986) > ------- 在本书的[第一部分](part-i.md)中,我们讨论了数据系统的各个方面,但仅限于数据存储在单台机器上的情况。现在我们到了[第二部分](part-ii.md),进入更高的层次,并提出一个问题:如果**多台机器**参与数据的存储和检索,会发生什么? 你可能会出于各种各样的原因,希望将数据库分布到多台机器上: ***可伸缩性*** 如果你的数据量、读取负载、写入负载超出单台机器的处理能力,可以将负载分散到多台计算机上。 ***容错/高可用性*** 如果你的应用需要在单台机器(或多台机器,网络或整个数据中心)出现故障的情况下仍然能继续工作,则可使用多台机器,以提供冗余。一台故障时,另一台可以接管。 ***延迟*** 如果在世界各地都有用户,你也许会考虑在全球范围部署多个服务器,从而每个用户可以从地理上最近的数据中心获取服务,避免了等待网络数据包穿越半个世界。 ## 伸缩至更高的载荷 如果你需要的只是伸缩至更高的**载荷(load)**,最简单的方法就是购买更强大的机器(有时称为**垂直伸缩(vertical scaling)**或**向上伸缩(scale up)**)。许多处理器,内存和磁盘可以在同一个操作系统下相互连接,快速的相互连接允许任意处理器访问内存或磁盘的任意部分。在这种 **共享内存架构(shared-memory architecture)** 中,所有的组件都可以看作一台单独的机器[^i]。 [^i]: 在大型机中,尽管任意处理器都可以访问内存的任意部分,但总有一些内存区域与一些处理器更接近(称为**非均匀内存访问(nonuniform memory access, NUMA)**【1】)。 为了有效利用这种架构特性,需要对处理进行细分,以便每个处理器主要访问临近的内存,这意味着即使表面上看起来只有一台机器在运行,**分区(partitioning)**仍然是必要的。 共享内存方法的问题在于,成本增长速度快于线性增长:一台有着双倍处理器数量,双倍内存大小,双倍磁盘容量的机器,通常成本会远远超过原来的两倍。而且可能因为存在瓶颈,并不足以处理双倍的载荷。 共享内存架构可以提供有限的容错能力,高端机器可以使用热插拔的组件(不关机更换磁盘,内存模块,甚至处理器)——但它必然囿于单个地理位置的桎梏。 另一种方法是**共享磁盘架构(shared-disk architecture)**,它使用多台具有独立处理器和内存的机器,但将数据存储在机器之间共享的磁盘阵列上,这些磁盘通过快速网络连接[^ii]。这种架构用于某些数据仓库,但竞争和锁定的开销限制了共享磁盘方法的可伸缩性【2】。 [^ii]: 网络附属存储(Network Attached Storage, NAS),或**存储区网络(Storage Area Network, SAN)** ### 无共享架构 相比之下,**无共享架构(shared-nothing architecture)**(有时称为**水平伸缩(horizontal scale)** 或**向外伸缩(scale out)**)已经相当普及。在这种架构中,运行数据库软件的每台机器/虚拟机都称为**节点(node)**。每个节点只使用各自的处理器,内存和磁盘。节点之间的任何协调,都是在软件层面使用传统网络实现的。 无共享系统不需要使用特殊的硬件,所以你可以用任意机器——比如性价比最好的机器。你也许可以跨多个地理区域分布数据从而减少用户延迟,或者在损失一整个数据中心的情况下幸免于难。随着云端虚拟机部署的出现,即使是小公司,现在无需Google级别的运维,也可以实现异地分布式架构。 在这一部分里,我们将重点放在无共享架构上。它不见得是所有场景的最佳选择,但它是最需要你谨慎从事的架构。如果你的数据分布在多个节点上,你需要意识到这样一个分布式系统中约束和权衡 ——数据库并不能魔术般地把这些东西隐藏起来。 虽然分布式无共享架构有许多优点,但它通常也会给应用带来额外的复杂度,有时也会限制你可用数据模型的表达力。在某些情况下,一个简单的单线程程序可以比一个拥有超过100个CPU核的集群表现得更好【4】。另一方面,无共享系统可以非常强大。接下来的几章,将详细讨论分布式数据会带来的问题。 ### 复制 vs 分区 数据分布在多个节点上有两种常见的方式: ***复制(Replication)*** ​ 在几个不同的节点上保存数据的相同副本,可能放在不同的位置。 复制提供了冗余:如果一些节点不可用,剩余的节点仍然可以提供数据服务。 复制也有助于改善性能。 [第五章](ch5.md)将讨论复制。 ***分区 (Partitioning)*** ​ 将一个大型数据库拆分成较小的子集(称为**分区(partitions)**),从而不同的分区可以指派给不同的**节点(node)**(亦称**分片(shard)**)。 [第六章](ch6.md)将讨论分区。 复制和分区是不同的机制,但它们经常同时使用。如[图II-1](img/figii-1.png)所示。 ![](img/figii-1.png) **图II-1 一个数据库切分为两个分区,每个分区都有两个副本** 理解了这些概念,就可以开始讨论在分布式系统中需要做出的困难抉择。[第七章](ch7.md)将讨论**事务(Transaction)**,这对于了解数据系统中可能出现的各种问题,以及我们可以做些什么很有帮助。[第八章](ch8.md)和[第九章](ch9.md)将讨论分布式系统的根本局限性。 在本书的[第三部分](part-iii.md)中,将讨论如何将多个(可能是分布式的)数据存储集成为一个更大的系统,以满足复杂的应用需求。 但首先,我们来聊聊分布式的数据。 ## 索引 5. [复制](ch5.md) 6. [分片](ch6.md) 7. [事务](ch7.md) 8. [分布式系统的麻烦](ch8.md) 9. [一致性与共识](ch9.md) ## 参考文献 1. Ulrich Drepper: “[What Every Programmer Should Know About Memory](https://people.freebsd.org/~lstewart/articles/cpumemory.pdf),” akka‐dia.org, November 21, 2007. 2. Ben Stopford: “[Shared Nothing vs. Shared Disk Architectures: An Independent View](http://www.benstopford.com/2009/11/24/understanding-the-shared-nothing-architecture/),” benstopford.com, November 24, 2009. 3. Michael Stonebraker: “[The Case for Shared Nothing](http://db.cs.berkeley.edu/papers/hpts85-nothing.pdf),” IEEE Database EngineeringBulletin, volume 9, number 1, pages 4–9, March 1986. 4. Frank McSherry, Michael Isard, and Derek G. Murray: “[Scalability! But at What COST?](http://www.frankmcsherry.org/assets/COST.pdf),” at 15th USENIX Workshop on Hot Topics in Operating Systems (HotOS),May 2015. ------ | 上一章 | 目录 | 下一章 | | ---------------------------- | ------------------------------- | ---------------------- | | [第四章:编码与演化](ch4.md) | [设计数据密集型应用](README.md) | [第五章:复制](ch5.md) |