mirror of
https://github.com/Vonng/ddia.git
synced 2025-01-05 15:30:06 +08:00
update zh-tw content
This commit is contained in:
parent
782fb765e5
commit
cbe0e3ecd9
@ -150,6 +150,9 @@
|
|||||||
|
|
||||||
| ISSUE & Pull Requests | USER | Title |
|
| ISSUE & Pull Requests | USER | Title |
|
||||||
| ----------------------------------------------- | ------------------------------------------------------------ | ------------------------------------------------------------ |
|
| ----------------------------------------------- | ------------------------------------------------------------ | ------------------------------------------------------------ |
|
||||||
|
| [241](https://github.com/Vonng/ddia/pull/241) | [@lynkeib](https://github.com/lynkeib) | ch8: 修正不正確的公式格式 |
|
||||||
|
| [240](https://github.com/Vonng/ddia/pull/240) | [@8da2k](https://github.com/8da2k) | ch9: 修正不通順的翻譯 |
|
||||||
|
| [239](https://github.com/Vonng/ddia/pull/239) | [@BeBraveBeCurious](https://github.com/BeBraveBeCurious) | ch7: 修正不一致的翻譯 |
|
||||||
| [237](https://github.com/Vonng/ddia/pull/237) | [@zhangnew](https://github.com/zhangnew) | ch3: 修正錯誤的圖片連結 |
|
| [237](https://github.com/Vonng/ddia/pull/237) | [@zhangnew](https://github.com/zhangnew) | ch3: 修正錯誤的圖片連結 |
|
||||||
| [229](https://github.com/Vonng/ddia/pull/229) | [@lis186](https://github.com/lis186) | 指出繁體中文的轉譯錯誤:複雜 |
|
| [229](https://github.com/Vonng/ddia/pull/229) | [@lis186](https://github.com/lis186) | 指出繁體中文的轉譯錯誤:複雜 |
|
||||||
| [226](https://github.com/Vonng/ddia/pull/226) | [@chroming](https://github.com/chroming) | ch1: 修正導航欄中的章節名稱 |
|
| [226](https://github.com/Vonng/ddia/pull/226) | [@chroming](https://github.com/chroming) | ch1: 修正導航欄中的章節名稱 |
|
||||||
|
@ -690,7 +690,7 @@ VoltDB 還使用儲存過程進行復制:但不是將事務的寫入結果從
|
|||||||
|
|
||||||
- 若事務要讀取物件,則須先以共享模式獲取鎖。允許多個事務同時持有共享鎖。但如果另一個事務已經在物件上持有排它鎖,則這些事務必須等待。
|
- 若事務要讀取物件,則須先以共享模式獲取鎖。允許多個事務同時持有共享鎖。但如果另一個事務已經在物件上持有排它鎖,則這些事務必須等待。
|
||||||
- 若事務要寫入一個物件,它必須首先以獨佔模式獲取該鎖。沒有其他事務可以同時持有鎖(無論是共享模式還是獨佔模式),所以如果物件上存在任何鎖,該事務必須等待。
|
- 若事務要寫入一個物件,它必須首先以獨佔模式獲取該鎖。沒有其他事務可以同時持有鎖(無論是共享模式還是獨佔模式),所以如果物件上存在任何鎖,該事務必須等待。
|
||||||
- 如果事務先讀取再寫入物件,則它可能會將其共享鎖升級為獨佔鎖。升級鎖的工作與直接獲得排他鎖相同。
|
- 如果事務先讀取再寫入物件,則它可能會將其共享鎖升級為獨佔鎖。升級鎖的工作與直接獲得獨佔鎖相同。
|
||||||
- 事務獲得鎖之後,必須繼續持有鎖直到事務結束(提交或中止)。這就是 “兩階段” 這個名字的來源:第一階段(當事務正在執行時)獲取鎖,第二階段(在事務結束時)釋放所有的鎖。
|
- 事務獲得鎖之後,必須繼續持有鎖直到事務結束(提交或中止)。這就是 “兩階段” 這個名字的來源:第一階段(當事務正在執行時)獲取鎖,第二階段(在事務結束時)釋放所有的鎖。
|
||||||
|
|
||||||
由於使用了這麼多的鎖,因此很可能會發生:事務 A 等待事務 B 釋放它的鎖,反之亦然。這種情況叫做 **死鎖(Deadlock)**。資料庫會自動檢測事務之間的死鎖,並中止其中一個,以便另一個繼續執行。被中止的事務需要由應用程式重試。
|
由於使用了這麼多的鎖,因此很可能會發生:事務 A 等待事務 B 釋放它的鎖,反之亦然。這種情況叫做 **死鎖(Deadlock)**。資料庫會自動檢測事務之間的死鎖,並中止其中一個,以便另一個繼續執行。被中止的事務需要由應用程式重試。
|
||||||
|
@ -153,7 +153,7 @@
|
|||||||
|
|
||||||
#### 鎖定和領導選舉
|
#### 鎖定和領導選舉
|
||||||
|
|
||||||
一個使用單主複製的系統,需要確保領導真的只有一個,而不是幾個(腦裂)。一種選擇領導者的方法是使用鎖:每個節點在啟動時嘗試獲取鎖,成功者成為領導者【14】。不管這個鎖是如何實現的,它必須是線性一致的:所有節點必須就哪個節點擁有鎖達成一致,否則就沒用了。
|
一個使用單主複製的系統,需要確保領導者真的只有一個,而不是幾個(腦裂)。一種選擇領導者的方法是使用鎖:每個節點在啟動時嘗試獲取鎖,成功者成為領導者【14】。不管這個鎖是如何實現的,它必須是線性一致的:所有節點必須就哪個節點擁有鎖達成一致,否則就沒用了。
|
||||||
|
|
||||||
諸如 Apache ZooKeeper 【15】和 etcd 【16】之類的協調服務通常用於實現分散式鎖和領導者選舉。它們使用一致性演算法,以容錯的方式實現線性一致的操作(在本章後面的 “[容錯共識](#容錯共識)” 中討論此類演算法)[^iii]。還有許多微妙的細節來正確地實現鎖和領導者選舉(例如,請參閱 “[領導者和鎖](ch8.md#領導者和鎖)” 中的防護問題),而像 Apache Curator 【17】這樣的庫則透過在 ZooKeeper 之上提供更高級別的配方來提供幫助。但是,線性一致性儲存服務是這些協調任務的基礎。
|
諸如 Apache ZooKeeper 【15】和 etcd 【16】之類的協調服務通常用於實現分散式鎖和領導者選舉。它們使用一致性演算法,以容錯的方式實現線性一致的操作(在本章後面的 “[容錯共識](#容錯共識)” 中討論此類演算法)[^iii]。還有許多微妙的細節來正確地實現鎖和領導者選舉(例如,請參閱 “[領導者和鎖](ch8.md#領導者和鎖)” 中的防護問題),而像 Apache Curator 【17】這樣的庫則透過在 ZooKeeper 之上提供更高級別的配方來提供幫助。但是,線性一致性儲存服務是這些協調任務的基礎。
|
||||||
|
|
||||||
@ -217,7 +217,7 @@
|
|||||||
|
|
||||||
對於無主複製的系統(Dynamo 風格;請參閱 “[無主複製](ch5.md#無主複製)”),有時候人們會聲稱透過要求法定人數讀寫( $w + r > n$ )可以獲得 “強一致性”。這取決於法定人數的具體配置,以及強一致性如何定義(通常不完全正確)。
|
對於無主複製的系統(Dynamo 風格;請參閱 “[無主複製](ch5.md#無主複製)”),有時候人們會聲稱透過要求法定人數讀寫( $w + r > n$ )可以獲得 “強一致性”。這取決於法定人數的具體配置,以及強一致性如何定義(通常不完全正確)。
|
||||||
|
|
||||||
基於日曆時鐘(例如,在 Cassandra 中;請參閱 “[依賴同步時鐘](ch8.md#依賴同步時鐘)”)的 “最後寫入勝利” 衝突解決方法幾乎可以確定是非線性一致的,由於時鐘偏差,不能保證時鐘的時間戳與實際事件順序一致。寬鬆的法定人數(請參閱 “[寬鬆的法定人數與提示移交](ch5.md#寬鬆的法定人數與提示移交)”)也破壞了線性一致的可能性。即使使用嚴格的法定人數,非線性一致的行為也只是可能的,如下節所示。
|
基於日曆時鐘(例如,在 Cassandra 中;請參閱 “[依賴同步時鐘](ch8.md#依賴同步時鐘)”)的 “最後寫入勝利” 衝突解決方法幾乎可以確定是非線性一致的,由於時鐘偏差,不能保證時鐘的時間戳與實際事件順序一致。寬鬆的法定人數(請參閱 “[寬鬆的法定人數與提示移交](ch5.md#寬鬆的法定人數與提示移交)”)也破壞了線性一致的可能性。即使使用嚴格的法定人數,非線性一致的行為也是可能的,如下節所示。
|
||||||
|
|
||||||
#### 線性一致性和法定人數
|
#### 線性一致性和法定人數
|
||||||
|
|
||||||
@ -287,7 +287,7 @@ CAP 定理的正式定義僅限於很狹隘的範圍【30】,它只考慮了
|
|||||||
|
|
||||||
#### 線性一致性和網路延遲
|
#### 線性一致性和網路延遲
|
||||||
|
|
||||||
雖然線性一致是一個很有用的保證,但實際上,線性一致的系統驚人的少。例如,現代多核 CPU 上的記憶體甚至都不是線性一致的【43】:如果一個 CPU 核上執行的執行緒寫入某個記憶體地址,而另一個 CPU 核上執行的執行緒不久之後讀取相同的地址,並沒有保證一定能一定讀到第一個執行緒寫入的值(除非使用了 **記憶體屏障(memory barrier)** 或 **圍欄(fence)**【44】)。
|
雖然線性一致是一個很有用的保證,但實際上,線性一致的系統驚人的少。例如,現代多核 CPU 上的記憶體甚至都不是線性一致的【43】:如果一個 CPU 核上執行的執行緒寫入某個記憶體地址,而另一個 CPU 核上執行的執行緒不久之後讀取相同的地址,並沒有保證一定能讀到第一個執行緒寫入的值(除非使用了 **記憶體屏障(memory barrier)** 或 **圍欄(fence)**【44】)。
|
||||||
|
|
||||||
這種行為的原因是每個 CPU 核都有自己的記憶體快取和儲存緩衝區。預設情況下,記憶體訪問首先走快取,任何變更會非同步寫入主存。因為快取訪問比主存要快得多【45】,所以這個特性對於現代 CPU 的良好效能表現至關重要。但是現在就有幾個資料副本(一個在主存中,也許還有幾個在不同快取中的其他副本),而且這些副本是非同步更新的,所以就失去了線性一致性。
|
這種行為的原因是每個 CPU 核都有自己的記憶體快取和儲存緩衝區。預設情況下,記憶體訪問首先走快取,任何變更會非同步寫入主存。因為快取訪問比主存要快得多【45】,所以這個特性對於現代 CPU 的良好效能表現至關重要。但是現在就有幾個資料副本(一個在主存中,也許還有幾個在不同快取中的其他副本),而且這些副本是非同步更新的,所以就失去了線性一致性。
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user