mirror of
https://github.com/Vonng/ddia.git
synced 2024-12-06 15:20:12 +08:00
Refine sentences in ch1.md
Refine sentences for more comprehensible in Chinese
This commit is contained in:
parent
92a14db0f7
commit
cad1533859
@ -241,7 +241,7 @@
|
|||||||
>
|
>
|
||||||
> 在多重呼叫的後端服務裡,高百分位數變得特別重要。即使並行呼叫,終端使用者請求仍然需要等待最慢的並行呼叫完成。如 [圖 1-5](../img/fig1-5.png) 所示,只需要一個緩慢的呼叫就可以使整個終端使用者請求變慢。即使只有一小部分後端呼叫速度較慢,如果終端使用者請求需要多個後端呼叫,則獲得較慢呼叫的機會也會增加,因此較高比例的終端使用者請求速度會變慢(效果稱為尾部延遲放大【24】)。
|
> 在多重呼叫的後端服務裡,高百分位數變得特別重要。即使並行呼叫,終端使用者請求仍然需要等待最慢的並行呼叫完成。如 [圖 1-5](../img/fig1-5.png) 所示,只需要一個緩慢的呼叫就可以使整個終端使用者請求變慢。即使只有一小部分後端呼叫速度較慢,如果終端使用者請求需要多個後端呼叫,則獲得較慢呼叫的機會也會增加,因此較高比例的終端使用者請求速度會變慢(效果稱為尾部延遲放大【24】)。
|
||||||
>
|
>
|
||||||
> 如果你想將響應時間百分點新增到你的服務的監視儀表板,則需要持續有效地計算它們。例如,你可能希望在最近 10 分鐘內保持請求響應時間的滾動視窗。每一分鐘,你都會計算出該視窗中的中值和各種百分數,並將這些度量值繪製在圖上。
|
> 如果你想將響應時間百分點新增到你的服務的監視儀表板,則需要持續有效地計算它們。例如,在連續 10 分鐘的請求資料響應時間的統計上,你可能會用一個可滑動的視窗範圍為基礎。每一分鐘,你都會計算出該視窗中的響應時間中值和各種百分數,並將這些度量值繪製在圖上。
|
||||||
>
|
>
|
||||||
> 簡單的實現是在時間視窗內儲存所有請求的響應時間列表,並且每分鐘對列表進行排序。如果對你來說效率太低,那麼有一些演算法能夠以最小的 CPU 和記憶體成本(如前向衰減【25】、t-digest【26】或 HdrHistogram 【27】)來計算百分位數的近似值。請注意,平均百分比(例如,減少時間解析度或合併來自多臺機器的資料)在數學上沒有意義 - 聚合響應時間資料的正確方法是新增直方圖【28】。
|
> 簡單的實現是在時間視窗內儲存所有請求的響應時間列表,並且每分鐘對列表進行排序。如果對你來說效率太低,那麼有一些演算法能夠以最小的 CPU 和記憶體成本(如前向衰減【25】、t-digest【26】或 HdrHistogram 【27】)來計算百分位數的近似值。請注意,平均百分比(例如,減少時間解析度或合併來自多臺機器的資料)在數學上沒有意義 - 聚合響應時間資料的正確方法是新增直方圖【28】。
|
||||||
|
|
||||||
@ -411,4 +411,4 @@
|
|||||||
|
|
||||||
| 上一章 | 目錄 | 下一章 |
|
| 上一章 | 目錄 | 下一章 |
|
||||||
| ----------------------------------- | ------------------------------- | ------------------------------------ |
|
| ----------------------------------- | ------------------------------- | ------------------------------------ |
|
||||||
| [第一部分:資料系統基礎](part-i.md) | [設計資料密集型應用](README.md) | [第二章:資料模型與查詢語言](ch2.md) |
|
| [第一部分:資料系統基礎](part-i.md) | [設計資料密集型應用](README.md) | [第二章:資料模型與查詢語言](ch2.md) |
|
||||||
|
Loading…
Reference in New Issue
Block a user