mirror of
https://github.com/Vonng/ddia.git
synced 2024-12-06 15:20:12 +08:00
commit
bcfba360ea
4
ch9.md
4
ch9.md
@ -17,7 +17,7 @@
|
||||
|
||||
现在我们将继续沿着同样的路线前进,寻求可以让应用忽略分布式系统部分问题的抽象概念。例如,分布式系统最重要的抽象之一就是**共识(consensus)**:**就是让所有的节点对某件事达成一致**。正如我们在本章中将会看到的那样,尽管存在网络故障和流程故障,可靠地达成共识是一个令人惊讶的棘手问题。
|
||||
|
||||
一旦达成共识,应用可以将其用于各种目的。例如,假设你有一个单主复制的数据库。如果领导者挂掉,并且需要故障切换到另一个节点,剩余的数据库节点可以使用共识来选举新的领导者。正如在“[处理节点宕机](ch5.md#处理节点宕机)”中所讨论的那样,重要的是只有一个领导者,且所有的节点都认同其领导。如果两个节点都认为自己是领导者,这种情况被称为**脑裂(split brain)**,且经常导致数据丢失。正确实现共识有助于避免这种问题。
|
||||
一旦达成共识,应用可以将其用于各种目的。例如,假设你有一个单主复制的数据库。如果主库挂掉,并且需要故障切换到另一个节点,剩余的数据库节点可以使用共识来选举新的领导者。正如在“[处理节点宕机](ch5.md#处理节点宕机)”中所讨论的那样,重要的是只有一个领导者,且所有的节点都认同其领导。如果两个节点都认为自己是领导者,这种情况被称为**脑裂(split brain)**,且经常导致数据丢失。正确实现共识有助于避免这种问题。
|
||||
|
||||
在本章后面的“[分布式事务和共识](#分布式事务和共识)”中,我们将研究解决共识和相关问题的算法。但首先,我们首先需要探索可以在分布式系统中提供的保证和抽象的范围。
|
||||
|
||||
@ -73,7 +73,7 @@
|
||||
线性一致性背后的基本思想很简单:使系统看起来好像只有一个数据副本。然而确切来讲,实际上有更多要操心的地方。为了更好地理解线性一致性,让我们再看几个例子。
|
||||
|
||||
[图9-2](img/fig9-2.png) 显示了三个客户端在线性一致数据库中同时读写相同的键`x`。在分布式系统文献中,`x`被称为**寄存器(register)**,例如,它可以是键值存储中的一个**键**,关系数据库中的一**行**,或文档数据库中的一个**文档**。
|
||||
|
||||
|
||||
![](img/fig9-2.png)
|
||||
|
||||
**图9-2 如果读取请求与写入请求并发,则可能会返回旧值或新值**
|
||||
|
Loading…
Reference in New Issue
Block a user