mirror of
https://github.com/Vonng/ddia.git
synced 2025-01-05 15:30:06 +08:00
fix headers in part-ii.md and part-iii.md
This commit is contained in:
parent
5e1eff71bb
commit
b35ee45282
@ -23,7 +23,7 @@
|
||||
|
||||
如果在世界各地都有用户,你也许会考虑在全球范围部署多个服务器,从而每个用户可以从地理上最近的数据中心获取服务,避免了等待网络数据包穿越半个世界。
|
||||
|
||||
### 伸缩至更高的载荷
|
||||
## 伸缩至更高的载荷
|
||||
|
||||
如果你需要的只是伸缩至更高的**载荷(load)**,最简单的方法就是购买更强大的机器(有时称为**垂直伸缩(vertical scaling)**或**向上伸缩(scale up)**)。许多处理器,内存和磁盘可以在同一个操作系统下相互连接,快速的相互连接允许任意处理器访问内存或磁盘的任意部分。在这种 **共享内存架构(shared-memory architecture)** 中,所有的组件都可以看作一台单独的机器[^i]。
|
||||
|
||||
@ -37,7 +37,7 @@
|
||||
|
||||
[^ii]: 网络附属存储(Network Attached Storage, NAS),或**存储区网络(Storage Area Network, SAN)**
|
||||
|
||||
#### 无共享架构
|
||||
### 无共享架构
|
||||
|
||||
相比之下,**无共享架构(shared-nothing architecture)**(有时称为**水平伸缩(horizontal scale)** 或**向外伸缩(scale out)**)已经相当普及。在这种架构中,运行数据库软件的每台机器/虚拟机都称为**节点(node)**。每个节点只使用各自的处理器,内存和磁盘。节点之间的任何协调,都是在软件层面使用传统网络实现的。
|
||||
|
||||
|
@ -6,15 +6,15 @@
|
||||
|
||||
本书的最后一部分,会研究将多个不同数据系统(可能有着不同数据模型,并针对不同的访问模式进行优化)集成为一个协调一致的应用架构时,会遇到的问题。软件供应商经常会忽略这一方面的生态建设,并声称他们的产品能够满足你的所有需求。在现实世界中,集成不同的系统是实际应用中最重要的事情之一。
|
||||
|
||||
## 记录和衍生数据系统
|
||||
## 记录系统和衍生数据系统
|
||||
|
||||
从高层次上看,存储和处理数据的系统可以分为两大类:
|
||||
|
||||
#### 记录系统(System of record)
|
||||
***记录系统(System of record)***
|
||||
|
||||
**记录系统**,也被称为**真相源(source of truth)**,持有数据的权威版本。当新的数据进入时(例如,用户输入)首先会记录在这里。每个事实正正好好表示一次(表示通常是**标准化的(normalized)**)。如果其他系统和**记录系统**之间存在任何差异,那么记录系统中的值是正确的(根据定义)。
|
||||
**记录系统**,也被称为**真相源(source of truth)**,持有数据的权威版本。当新的数据进入时(例如,用户输入)首先会记录在这里。每个事实正正好好表示一次(表示通常是**正规化的(normalized)**)。如果其他系统和**记录系统**之间存在任何差异,那么记录系统中的值是正确的(根据定义)。
|
||||
|
||||
#### 衍生数据系统(Derived data systems)
|
||||
***衍生数据系统(Derived data systems)***
|
||||
|
||||
**衍生系统**中的数据,通常是另一个系统中的现有数据以某种方式进行转换或处理的结果。如果丢失衍生数据,可以从原始来源重新创建。典型的例子是**缓存(cache)**:如果数据在缓存中,就可以由缓存提供服务;如果缓存不包含所需数据,则降级由底层数据库提供。非规范化的值,索引和物化视图亦属此类。在推荐系统中,预测汇总数据通常衍生自用户日志。
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user