Merge pull request #245 from skyran1278/master

ch12: 修正繁體中文翻譯 討論瞭 => 討論了
This commit is contained in:
YIN, Gang 2022-06-08 09:12:07 +08:00 committed by GitHub
commit 90d84258a8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 4 additions and 3 deletions

View File

@ -13,6 +13,7 @@ def convert(src_path, dst_path, cfg='s2twp.json'):
.replace('嚐試', '嘗試')
.replace('線上性', '線性')
.replace('復雜', '複雜')
.replace('討論瞭', '討論了')
for line in src))
print("convert %s to %s" % (src_path, dst_path))

View File

@ -175,7 +175,7 @@ Unix 和關係資料庫以非常不同的哲學來處理資訊管理問題。Uni
* 複製日誌,保持其他節點上資料的副本最新(請參閱 “[複製日誌的實現](ch5.md#複製日誌的實現)”)
* 全文搜尋索引,允許在文字中進行關鍵字搜尋(請參閱 “[全文搜尋和模糊索引](ch3.md#全文搜尋和模糊索引)”也內置於某些關係資料庫【1】
在 [第十章](ch10.md) 和 [第十一章](ch11.md) 中,出現了類似的主題。我們討論如何構建全文搜尋索引(請參閱 “[批處理工作流的輸出](ch10.md#批處理工作流的輸出)”),瞭解瞭如何維護物化檢視(請參閱 “[維護物化檢視](ch11.md#維護物化檢視)”)以及如何將變更從資料庫複製到衍生資料系統(請參閱 “[變更資料捕獲](ch11.md#變更資料捕獲)”)。
在 [第十章](ch10.md) 和 [第十一章](ch11.md) 中,出現了類似的主題。我們討論如何構建全文搜尋索引(請參閱 “[批處理工作流的輸出](ch10.md#批處理工作流的輸出)”),瞭解瞭如何維護物化檢視(請參閱 “[維護物化檢視](ch11.md#維護物化檢視)”)以及如何將變更從資料庫複製到衍生資料系統(請參閱 “[變更資料捕獲](ch11.md#變更資料捕獲)”)。
資料庫中內建的功能與人們用批處理和流處理器構建的衍生資料系統似乎有相似之處。
@ -867,7 +867,7 @@ ACID 意義下的一致性(請參閱 “[一致性](ch7.md#一致性)”)基
## 本章小結
在本章中,我們討論了設計資料系統的新方式,而且也包括了我的個人觀點,以及對未來的猜測。我們從這樣一種觀察開始:沒有單種工具能高效服務所有可能的用例,因此應用必須組合使用幾種不同的軟體才能實現其目標。我們討論如何使用批處理與事件流來解決這一 **資料整合data integration** 問題,以便讓資料變更在不同系統之間流動。
在本章中,我們討論了設計資料系統的新方式,而且也包括了我的個人觀點,以及對未來的猜測。我們從這樣一種觀察開始:沒有單種工具能高效服務所有可能的用例,因此應用必須組合使用幾種不同的軟體才能實現其目標。我們討論如何使用批處理與事件流來解決這一 **資料整合data integration** 問題,以便讓資料變更在不同系統之間流動。
在這種方法中,某些系統被指定為記錄系統,而其他資料則透過轉換衍生自記錄系統。透過這種方式,我們可以維護索引,物化檢視,機器學習模型,統計摘要等等。透過使這些衍生和轉換操作非同步且鬆散耦合,能夠防止一個區域中的問題擴散到系統中不相關部分,從而增加整個系統的穩健性與容錯性。
@ -877,7 +877,7 @@ ACID 意義下的一致性(請參閱 “[一致性](ch7.md#一致性)”)基
衍生狀態可以透過觀察底層資料的變更來更新。此外,衍生狀態本身可以進一步被下游消費者觀察。我們甚至可以將這種資料流一路傳送至顯示資料的終端使用者裝置,從而構建可動態更新以反映資料變更,並在離線時能繼續工作的使用者介面。
接下來,我們討論如何確保所有這些處理在出現故障時保持正確。我們看到可伸縮的強完整性保證可以透過非同步事件處理來實現,透過使用端到端操作識別符號使操作冪等,以及透過非同步檢查約束。客戶端可以等到檢查透過,或者不等待繼續前進,但是可能會冒有違反約束需要道歉的風險。這種方法比使用分散式事務的傳統方法更具可伸縮性與可靠性,並且在實踐中適用於很多業務流程。
接下來,我們討論如何確保所有這些處理在出現故障時保持正確。我們看到可伸縮的強完整性保證可以透過非同步事件處理來實現,透過使用端到端操作識別符號使操作冪等,以及透過非同步檢查約束。客戶端可以等到檢查透過,或者不等待繼續前進,但是可能會冒有違反約束需要道歉的風險。這種方法比使用分散式事務的傳統方法更具可伸縮性與可靠性,並且在實踐中適用於很多業務流程。
透過圍繞資料流構建應用,並非同步檢查約束,我們可以避免絕大多數的協調工作,建立保證完整性且效能仍然表現良好的系統,即使在地理散佈的情況下與出現故障時亦然。然後,我們對使用審計來驗證資料完整性,以及損壞檢測進行了一些討論。