From a238f2851ea9b8440ffa52c8f1a17cd21c85ecd2 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E5=91=A8=E6=98=A5=E5=85=89?= Date: Thu, 26 Apr 2018 09:01:11 +0800 Subject: [PATCH] Translate glossary --- glossary.md | 189 +++++++++++++++++++++++++++++++++++++++++++++------- 1 file changed, 164 insertions(+), 25 deletions(-) diff --git a/glossary.md b/glossary.md index 6da36e5..304b9b6 100644 --- a/glossary.md +++ b/glossary.md @@ -10,7 +10,7 @@ ### 异步(asynchronous) -不等待某些事情完成(例如,通过网络将数据发送到另一个节点),并且不会假设要花多长时间。请参阅第153页上的“同步与异步复制”,第284页上的“同步与异步网络”,以及第306页上的“系统模型与现实”。 +不等待某些事情完成(例如,将数据发送到网络中的另一个节点),并且不会假设要花多长时间。请参阅第153页上的“同步与异步复制”,第284页上的“同步与异步网络”,以及第306页上的“系统模型与现实”。 @@ -18,14 +18,13 @@ 1.在并发操作的上下文中:描述一个在单个时间点看起来生效的操作,所以另一个并发进程永远不会遇到处于“半完成”状态的操作。另见隔离。 -2.在事务的上下文中:即使出现故障,将一组必须全部提交或全部回滚的写入组合在一起。参见第223页的“原子性”和第354页的“原子提交和两阶段提交(2PC)”。 +2.在事务的上下文中:将一些写入操作分为一组,这组写入要么全部提交成功,要么遇到错误时全部回滚。参见第223页的“原子性”和第354页的“原子提交和两阶段提交(2PC)”。 ### 背压(backpressure) -强制一些数据的发送者减慢,因为收件人不能保留 -与它一起。也称为流量控制。请参阅第441页上的“消息系统”。 +接收方接收数据速度较慢时,强制降低发送方的数据发送速度。也称为流量控制。请参阅第441页上的“消息系统”。 @@ -37,19 +36,19 @@ ### 边界(bounded) -有一些已知的上限或大小。例如,在网络延迟的情况下(请参阅“超时和未定义的延迟”在本页281)和数据集(请参阅第11章的介绍)。 +有一些已知的上限或大小。例如,网络延迟情况(请参阅“超时和未定义的延迟”在本页281)和数据集(请参阅第11章的介绍)。 ### 拜占庭故障(Byzantine fault) -以任意方式表现不正确的节点,例如通过向其他节点发送矛盾或恶意消息。请参阅第304页上的“拜占庭故障”。 +表现异常的节点,这种异常可能以任意方式出现,例如向其他节点发送矛盾或恶意消息。请参阅第304页上的“拜占庭故障”。 ### 缓存(cache) -最近记住使用数据的组件,以加快未来对相同数据的读取速度。它通常是不完整的:因此,如果缓存中缺少某些数据,则必须从某些底层较慢的数据存储系统具有完整的数据副本。 +一种组件,通过存储最近使用过的数据,加快未来对相同数据的读取速度。缓存中通常存放部分数据:因此,如果缓存中缺少某些数据,则必须从某些底层较慢的数据存储系统中,获取完整的数据副本。 @@ -61,7 +60,7 @@ ### 因果关系(causality) -事件之间的依赖关系,当一件事发生在另一件事情之前。例如,后面的事件是对早期事件的回应,或者建立在更早的事件上,或者应该根据先前的事件来理解。请参阅第186页上的“发生之前的关系和并发性”和第339页上的“排序和因果关系”。 +事件之间的依赖关系,当一件事发生在另一件事情之前。例如,后面的事件是对早期事件的回应,或者依赖于更早的事件,或者应该根据先前的事件来理解。请参阅第186页上的“发生之前的关系和并发性”和第339页上的“排序和因果关系”。 @@ -79,37 +78,37 @@ ### 声明式(declarative) -描述某些东西应该具有的属性,但不知道如何实现它的确切步骤。在查询的上下文中,查询优化器采用声明性查询并决定如何最好地执行它。请参阅第42页上的“数据的查询语言”。 +描述某些东西应有的属性,但不知道如何实现它的确切步骤。在查询的上下文中,查询优化器采用声明性查询并决定如何最好地执行它。请参阅第42页上的“数据的查询语言”。 ### 非规范化(denormalize) -为了加速读取,在标准数据集中引入一些冗余或重复数据,通常采用缓存或索引的形式。非规范化的值是一种预先计算的查询结果,视图。请参见“单对象和多对象操作”(第228页)和“从同一事件日志中派生多个视图”(第461页)。 +为了加速读取,在标准数据集中引入一些冗余或重复数据,通常采用缓存或索引的形式。非规范化的值是一种预先计算的查询结果,像物化视图。请参见“单对象和多对象操作”(第228页)和“从同一事件日志中派生多个视图”(第461页)。 ### 派生数据(derived data) -通过可重复的流程从其他数据创建的数据集,如有必要,您可以再次运行该数据集。通常,需要派生数据来加速对数据的特定读访问。索引,缓存和物化视图是派生数据的示例。参见第三部分的介绍。 +一种数据集,根据其他数据通过可重复运行的流程创建。必要时,你可以运行该流程再次创建派生数据。派生数据通常用于提高特定数据的读取速度。常见的派生数据有索引、缓存和物化视图。参见第三部分的介绍。 ### 确定性(deterministic) -描述一个函数,如果给它相同的输入,则总是产生相同的输出。这意味着它不能依赖于随机数字,时间,网络通信或其他不可预测的事情。 +描述一个函数,如果给它相同的输入,则总是产生相同的输出。这意味着它不能依赖于随机数字、时间、网络通信或其他不可预测的事情。 ### 分布式(distributed) -在由网络连接的多个节点上运行。以部分故障为特征:系统的某些部分可能被破坏,而其他部分仍在工作,软件通常不可能知道究竟是什么被破坏。请参阅第274页上的“故障和部分故障”。 +在由网络连接的多个节点上运行。对于部分节点故障,具有容错性:系统的一部分发生故障时,其他部分仍可以正常工作,通常情况下,软件无需了解故障相关的确切情况。请参阅第274页上的“故障和部分故障”。 ### 持久(durable) -以某种方式存储数据,即使发生各种故障,也不会丢失数据。请参阅第226页上的“耐用性”。 +以某种方式存储数据,即使发生各种故障,也不会丢失数据。请参阅第226页上的“持久性”。 @@ -121,7 +120,7 @@ ### 故障转移(failover) -在具有单一领导者的系统中,故障转移是将领导角色从一个节点转移到另一个节点的过程。请参阅第156页的“处理节点中断”。 +在具有单一领导者的系统中,故障转移是将领导角色从一个节点转移到另一个节点的过程。请参阅第156页的“处理节点故障”。 @@ -139,100 +138,240 @@ ### 追随者(follower) -不直接接受来自客户端的任何写入的副本,但仅处理从领导者收到的数据更改。也称为辅助,从,只读副本或热备份。请参阅第152页上的“领导和追随者”。 +一种数据副本,仅处理领导者发出的数据变更,不直接接受来自客户端的任何写入。也称为辅助、仆从、只读副本或热备份。请参阅第152页上的“领导和追随者”。 ### 全文检索(full-text search) -通过任意关键字来搜索文本,通常具有附加特征,例如匹配类似的拼写词或同义词。全文索引是一种支持这种查询的次级索引。请参见第88页上的“全文搜索和模糊索引”。 +通过任意关键字来搜索文本,通常具有附加特征,例如匹配类似的拼写词或同义词。全文索引是一种支持这种查询的次级索引。请参阅第88页上的“全文搜索和模糊索引”。 ### 图(graph) -由顶点组成的数据结构(可以引用的东西,也称为节点或实体)和边(从一个顶点到另一个顶点的连接,也称为关系或弧)。请参阅第49页上的“类似图形的数据模型”。 +一种数据结构,由顶点(可以指向的东西,也称为节点或实体)和边(从一个顶点到另一个顶点的连接,也称为关系或弧)组成。请参阅第49页上的“和图相似的数据模型”。 ### 散列(hash) -汇集有共同点的记录。在一个记录与另一个记录有关(外键,文档参考,图中的边)的情况下最常用,查询需要获 - -取参考所指向的记录。请参阅第33页上的“多对一和多对多关系”和第393页上的“减少端连接和分组”。 +将输入转换为看起来像随机数值的函数。相同的输入会转换为相同的数值,不同的输入一般会转换为不同的数值,也可能转换为相同数值(也被称为冲突)。请参阅第203页的“根据键的散列值分隔”。 ### 幂等(idempotent) +用于描述一种操作可以安全地重试执行,即执行多次的效果和执行一次的效果相同。请参阅第478页的“幂等”。 + + + ### 索引(index) -### 隔离(isolation) +一种数据结构。通过索引,你可以根据特定字段的值,在所有数据记录中进行高效检索。请参阅第70页的“让数据库更强大的数据结构”。 + + + +### 隔离性(isolation) + +在事务上下文中,用于描述并发执行事务的互相干扰程度。串行运行具有最强的隔离性,不过其它程度的隔离也通常被使用。请参阅第225页的“隔离”。 + + ### 连接(join) +汇集有共同点的记录。在一个记录与另一个记录有关(外键,文档参考,图中的边)的情况下最常用,查询需要获取参考所指向的记录。请参阅第33页上的“多对一和多对多关系”和第393页上的“减少端连接和分组”。 + + + ### 领导者(leader) -当数据或服务被复制到多个节点时,领导是被允许进行更改的指定副本。领导者可以通过某些协议选举产生,也可以由管理者手动选择。也被称为主或主。见“领导和F +当数据或服务被复制到多个节点时,由领导者分发已授权变更的数据副本。领导者可以通过某些协议选举产生,也可以由管理者手动选择。也被称为主人。请参阅第152页的“领导者和追随者”。 + + ### 线性化(linearizable) +表现为系统中只有一份通过原子操作更新的数据副本。请参阅第324页的“线性化”。 + + + ### 局部性(locality) +一种性能优化方式,如果经常在相同的时间请求一些离散数据,把这些数据放到一个位置。请参阅第41页的“请求数据的局部性”。 + + + ### 锁(lock) +一种保证只有一个线程、节点或事务可以访问的机制,如果其它线程、节点或事务想访问相同元素,则必须等待锁被释放。请参阅第257页的“两段锁(2PL)”和301页的“领导者和锁”。 + + + ### 日志(log) +日志是一个只能以追加方式写入的文件,用于存放数据。预写式日志用于在存储引擎崩溃时恢复数据(请参阅第82页的“使二叉树更稳定”);结构化日志存储引擎使用日志作为它的主要存储格式(请参阅第76页的“有序字符串表和日志结构的合并树”);复制型日志用于把写入从领导者复制到追随者(请参阅第152页的“领导者和追随者”);事件性日志可以表现为数据流(请参阅第446页的“分段日志”)。 + + + ### 物化(materialize) +急切地计算并写出结果,而不是在请求时计算。请参阅第101页的“聚合:数据立方和物化视图”和419页的“中间状态的物化”。 + + + ### 节点(node) +计算机上运行的一些软件的实例,通过网络与其他节点通信以完成某项任务。 + + + ### 规范化(normalized) +以没有冗余或重复的方式进行结构化。 在规范化数据库中,当某些数据发生变化时,您只需要在一个地方进行更改,而不是在许多不同的地方复制很多次。 请参阅第33页上的“多对一和多对多关系”。 + + + ### OLAP(Online Analytic Processing) +在线分析处理。 通过对大量记录进行聚合(例如,计数,总和,平均)来表征的访问模式。 请参阅第90页上的“交易处理或分析?”。 + + + ### OLTP(Online Transaction Processing) +在线事务处理。 访问模式的特点是快速查询,读取或写入少量记录,这些记录通常通过键索引。 请参阅第90页上的“交易处理或分析?”。 + + + ### 分区(partitioning) +将单机上的大型数据集或计算结果拆分为较小部分,并将其分布到多台机器上。 也称为分片。 见第6章。 + + + ### 百分位点(percentile) +通过计算有多少值高于或低于某个阈值来衡量值分布的方法。 例如,某个时间段的第95个百分位响应时间是时间t,则该时间段中,95%的请求完成时间小于t,5%的请求完成时间要比t长。 请参阅第13页上的“描述性能”。 + + + ### 主键(primary key) +唯一标识记录的值(通常是数字或字符串)。 在许多应用程序中,主键由系统在创建记录时生成(例如,按顺序或随机); 它们通常不由用户设置。 另请参阅二级索引。 + + + ### 法定人数(quorum) +在操作完成之前,需要对操作进行投票的最少节点数量。 请参阅第179页上的“读和写的法定人数”。 + + + ### 再平衡(rebalance) +将数据或服务从一个节点移动到另一个节点以实现负载均衡。 请参阅第209页上的“再平衡分区”。 + + + ### 复制(replication) +在几个节点(副本)上保留相同数据的副本,以便在某些节点无法访问时,数据仍可访问。请参阅第5章。 + + + ### 模式(schema) +一些数据结构的描述,包括其字段和数据类型。 可以在数据生命周期的不同点检查某些数据是否符合模式(请参阅第39页上的“文档模型中的模式灵活性”),模式可以随时间变化(请参阅第4章)。 + + + ### 次级索引(secondary index) +与主要数据存储器一起维护的附加数据结构,使您可以高效地搜索与某种条件相匹配的记录。 请参阅第85页上的“其他索引结构”和第206页上的“分区和二级索引”。 + + + ### 可序列化(serializable) +保证多个并发事务同时执行时,它们的行为与按顺序逐个执行事务相同。 请参阅第251页上的“可序列化”。 + + + ### 无共享(shared-nothing) -### 偏差(skew) +与共享内存或共享磁盘架构相比,独立节点(每个节点都有自己的CPU,内存和磁盘)通过传统网络连接。 见第二部分的介绍。 + + + +### 偏斜(skew) + +1.各分区负载不平衡,例如某些分区有大量请求或数据,而其他分区则少得多。也被称为热点。请参阅第205页上的“工作负载偏斜和减轻热点”和第407页上的“处理偏斜”。 + +2.时间线异常导致事件以不期望的顺序出现。 请参阅第237页上的“快照隔离和可重复读取”中的关于读取偏斜的讨论,第246页上的“写入偏斜和模糊”中的写入偏斜以及第291页上的“订购事件的时间戳”中的时钟偏斜。 + + ### 脑裂(split brain) +两个节点同时认为自己是领导者的情况,这种情况可能违反系统担保。 请参阅第156页的“处理节点中断”和第300页的“真相由多数定义”。 + + + ### 存储过程(stored procdure) +一种对事务逻辑进行编码的方式,它可以完全在数据库服务器上执行,事务执行期间无需与客户端通信。 请参阅第252页的“实际串行执行”。 + + + ### 流处理(stream process) +持续运行的计算。可以持续接收事件流作为输入,并得出一些输出。 见第11章。 + + + ### 同步(synchronous) +异步的反义词。 + + + ### 记录系统(system of record) +一个保存主要权威版本数据的系统,也被称为真相的来源。首先在这里写入数据变更,其他数据集可以从记录系统派生。 参见第三部分的介绍。 + + + ### 超时(timeout) +检测故障的最简单方法之一,即在一段时间内观察是否缺乏响应。 但是,不可能知道超时是由于远程节点的问题还是网络中的问题造成的。 请参阅第281页上的“超时和无限延迟”。 + + + ### 全序(total order) +一种比较事物的方法(例如时间戳),可以让您总是说出两件事中哪一件更大,哪件更小。 总的来说,有些东西是无法比拟的(不能说哪个更大或更小)的顺序称为偏序。 请参见第341页的“因果顺序不是全序”。 + + + ### 事务(transaction) +为了简化错误处理和并发问题,将几个读写操作分组到一个逻辑单元中。 见第7章。 + + + ### 两阶段提交(2PC, two-phase commit) +一种确保多个数据库节点全部提交或全部中止事务的算法。 请参阅第354页上的“原子提交和两阶段提交(2PC)”。 + + + ### 两阶段锁定(2PL, two-phase locking) -### 无限制(unbounded) +一种用于实现可序列化隔离的算法,该算法通过事务获取对其读取或写入的所有数据的锁,直到事务结束。 请参阅第257页上的“两阶段锁定(2PL)”。 + + + +### 无边界(unbounded) + +没有任何已知的上限或大小。 反义词是边界(bounded)。 \ No newline at end of file