mirror of
https://github.com/Vonng/ddia.git
synced 2025-01-05 15:30:06 +08:00
Refine the chapter 2 sentences (#340)
* Add english annotate for special term Add english annotate for special term * Update ch2.md Refine the sentences * Update ch2.md Refine sentences * Update ch2.md Refine sentence for more comprehensible in Chinese * Update ch2.md Refine sentence for more comprehensible in Chinese * Update ch2.md Refine sentence for more comprehensible in Chinese * Update ch2.md Refine the sentences * Update ch2.md Refine sentences as advices * Update ch1.md Refine sentences as advices
This commit is contained in:
parent
1493d110ba
commit
4eac55bf3e
2
ch1.md
2
ch1.md
@ -239,7 +239,7 @@
|
||||
|
||||
> #### 实践中的百分位点
|
||||
>
|
||||
> 在多重调用的后端服务里,高百分位数变得特别重要。即使并行调用,最终用户请求仍然需要等待最慢的并行调用完成。如 [图 1-5](img/fig1-5.png) 所示,只需要一个缓慢的调用就可以使整个最终用户请求变慢。即使只有一小部分后端调用速度较慢,如果最终用户请求需要多个后端调用,则获得较慢调用的机会也会增加,因此较高比例的最终用户请求速度会变慢(效果称为尾部延迟放大【24】)。
|
||||
> 在多重调用的后端服务里,高百分位数变得特别重要。即使并行调用,最终用户请求仍然需要等待最慢的并行调用完成。如 [图 1-5](img/fig1-5.png) 所示,只需要一个缓慢的调用就可以使整个最终用户请求变慢。即使只有一小部分后端调用速度较慢,如果最终用户请求需要多个后端调用,则获得较慢调用的机会也会增加,因此较高比例的最终用户请求速度会变慢(该效果称为尾部延迟放大,即 tail latency amplification【24】)。
|
||||
>
|
||||
> 如果你想将响应时间百分点添加到你的服务的监视仪表板,则需要持续有效地计算它们。例如,你可以使用滑动窗口来跟踪连续10分钟内的请求响应时间。每一分钟,你都会计算出该窗口中的响应时间中值和各种百分数,并将这些度量值绘制在图上。
|
||||
>
|
||||
|
8
ch2.md
8
ch2.md
@ -116,7 +116,7 @@
|
||||
}
|
||||
```
|
||||
|
||||
有一些开发人员认为 JSON 模型减少了应用程序代码和存储层之间的阻抗不匹配。不过,正如我们将在 [第四章](ch4.md) 中看到的那样,JSON 作为数据编码格式也存在问题。缺乏一个模式往往被认为是一个优势;我们将在 “[文档模型中的模式灵活性](#文档模型中的模式灵活性)” 中讨论这个问题。
|
||||
有一些开发人员认为 JSON 模型减少了应用程序代码和存储层之间的阻抗不匹配。不过,正如我们将在 [第四章](ch4.md) 中看到的那样,JSON 作为数据编码格式也存在问题。无模式对 JSON 模型来说往往被认为是一个优势;我们将在 “[文档模型中的模式灵活性](#文档模型中的模式灵活性)” 中讨论这个问题。
|
||||
|
||||
JSON 表示比 [图 2-1](img/fig2-1.png) 中的多表模式具有更好的 **局部性(locality)**。如果在前面的关系型示例中获取简介,那需要执行多个查询(通过 `user_id` 查询每个表),或者在 User 表与其下属表之间混乱地执行多路连接。而在 JSON 表示中,所有相关信息都在同一个地方,一个查询就足够了。
|
||||
|
||||
@ -276,7 +276,7 @@ UPDATE users SET first_name = substring_index(name, ' ', 1); -- MySQL
|
||||
|
||||
文档通常以单个连续字符串形式进行存储,编码为 JSON、XML 或其二进制变体(如 MongoDB 的 BSON)。如果应用程序经常需要访问整个文档(例如,将其渲染至网页),那么存储局部性会带来性能优势。如果将数据分割到多个表中(如 [图 2-1](img/fig2-1.png) 所示),则需要进行多次索引查找才能将其全部检索出来,这可能需要更多的磁盘查找并花费更多的时间。
|
||||
|
||||
局部性仅仅适用于同时需要文档绝大部分内容的情况。数据库通常需要加载整个文档,即使只访问其中的一小部分,这对于大型文档来说是很浪费的。更新文档时,通常需要整个重写。只有不改变文档大小的修改才可以容易地原地执行。因此,通常建议保持相对小的文档,并避免增加文档大小的写入【9】。这些性能限制大大减少了文档数据库的实用场景。
|
||||
局部性仅仅适用于同时需要文档绝大部分内容的情况。即使只访问文档其中的一小部分,数据库通常需要加载整个文档,对于大型文档来说这种加载行为是很浪费的。更新文档时,通常需要整个重写。只有不改变文档大小的修改才可以容易地原地执行。因此,通常建议保持相对小的文档,并避免增加文档大小的写入【9】。这些性能限制大大减少了文档数据库的实用场景。
|
||||
|
||||
值得指出的是,为了局部性而分组集合相关数据的想法并不局限于文档模型。例如,Google 的 Spanner 数据库在关系数据模型中提供了同样的局部性属性,允许模式声明一个表的行应该交错(嵌套)在父表内【27】。Oracle 类似地允许使用一个称为 **多表索引集群表(multi-table index cluster tables)** 的类似特性【28】。Bigtable 数据模型(用于 Cassandra 和 HBase)中的 **列族(column-family)** 概念与管理局部性的目的类似【29】。
|
||||
|
||||
@ -488,7 +488,7 @@ db.observations.mapReduce(function map() {
|
||||
|
||||
map 和 reduce 函数在功能上有所限制:它们必须是 **纯** 函数,这意味着它们只使用传递给它们的数据作为输入,它们不能执行额外的数据库查询,也不能有任何副作用。这些限制允许数据库以任何顺序运行任何功能,并在失败时重新运行它们。然而,map 和 reduce 函数仍然是强大的:它们可以解析字符串、调用库函数、执行计算等等。
|
||||
|
||||
MapReduce 是一个相当底层的编程模型,用于计算机集群上的分布式执行。像 SQL 这样的更高级的查询语言可以用一系列的 MapReduce 操作来实现(见 [第十章](ch10.md)),但是也有很多不使用 MapReduce 的分布式 SQL 实现。请注意,SQL 中没有任何内容限制它在单个机器上运行,而 MapReduce 在分布式查询执行上没有垄断权。
|
||||
MapReduce 是一个相当底层的编程模型,用于计算机集群上的分布式执行。像 SQL 这样的更高级的查询语言可以用一系列的 MapReduce 操作来实现(见 [第十章](ch10.md)),但是也有很多不使用 MapReduce 的分布式 SQL 实现。須注意,SQL 并没有限制它只能在单一机器上运行,而 MapReduce 也并没有垄断所有的分布式查询执行。
|
||||
|
||||
能够在查询中使用 JavaScript 代码是高级查询的一个重要特性,但这不限于 MapReduce,一些 SQL 数据库也可以用 JavaScript 函数进行扩展【34】。
|
||||
|
||||
@ -594,7 +594,7 @@ CREATE INDEX edges_heads ON edges (head_vertex);
|
||||
|
||||
Cypher 是属性图的声明式查询语言,为 Neo4j 图形数据库而发明【37】(它是以电影 “黑客帝国” 中的一个角色来命名的,而与密码学中的加密算法无关【38】)。
|
||||
|
||||
[例 2-3]() 显示了将 [图 2-5](img/fig2-5.png) 的左边部分插入图形数据库的 Cypher 查询。可以类似地添加图的其余部分,为了便于阅读而省略。每个顶点都有一个像 `USA` 或 `Idaho` 这样的符号名称,查询的其他部分可以使用这些名称在顶点之间创建边,使用箭头符号:`(Idaho) - [:WITHIN] ->(USA)` 创建一条标记为 `WITHIN` 的边,`Idaho` 为尾节点,`USA` 为头节点。
|
||||
[例 2-3]() 显示了将 [图 2-5](img/fig2-5.png) 的左边部分插入图形数据库的 Cypher 查询。你可以以类似的方式把图的剩余部分添加进去,但这里为了文章可閱读性而省略这部分的示例。每个顶点都有一个像 `USA` 或 `Idaho` 这样的符号名称,查询的其他部分可以使用这些名称在顶点之间创建边,使用箭头符号:`(Idaho) - [:WITHIN] ->(USA)` 创建一条标记为 `WITHIN` 的边,`Idaho` 为尾节点,`USA` 为头节点。
|
||||
|
||||
**例 2-3 将图 2-5 中的数据子集表示为 Cypher 查询**
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user