fix: typo

This commit is contained in:
Vonng 2018-04-13 22:14:04 +08:00
parent 2b4d7d5606
commit 4d15457748
5 changed files with 11 additions and 11 deletions

2
ch1.md
View File

@ -384,7 +384,7 @@
**可维护性Maintainability**有许多方面,但实质上是关于工程师和运维团队的生活质量的。良好的抽象可以帮助降低复杂度,并使系统易于修改和适应新的应用场景。良好的可操作性意味着对系统的健康状态具有良好的可见性,并拥有有效的管理手段。 **可维护性Maintainability**有许多方面,但实质上是关于工程师和运维团队的生活质量的。良好的抽象可以帮助降低复杂度,并使系统易于修改和适应新的应用场景。良好的可操作性意味着对系统的健康状态具有良好的可见性,并拥有有效的管理手段。
不幸的是,使应用可靠、可扩展或可持续并不容易。但是某些模式和技术会不断重新出现在不同的应用中。在接下来的几章中,我们将看到一些数据系统的例子,并分析它们如何实现这些目标。 不幸的是,使应用可靠、可扩展或可维护并不容易。但是某些模式和技术会不断重新出现在不同的应用中。在接下来的几章中,我们将看到一些数据系统的例子,并分析它们如何实现这些目标。
在本书后面的[第三部分](part-iii.md)中,我们将看到一种模式:几个组件协同工作以构成一个完整的系统(如[图1-1](img/fig1-1.png)中的例子) 在本书后面的[第三部分](part-iii.md)中,我们将看到一种模式:几个组件协同工作以构成一个完整的系统(如[图1-1](img/fig1-1.png)中的例子)

View File

@ -18,7 +18,7 @@
## 数据集成 ## 数据集成
本书中反复出现的主题是,对于任何给定的问题,都有几种解决方案,所有这些解决方案都有不同的优点,缺点和折衷。例如,在[第3章](ch3.md)讨论存储引擎时我们看到了日志结构存储B树和列存储。在[第5章](ch5.md)讨论复制时,我们看到了单领导,多领导和无领导的方法。 本书中反复出现的主题是,对于任何给定的问题,都有几种解决方案,所有这些解决方案都有不同的优点,缺点和折衷。例如,在[第3章](ch3.md)讨论存储引擎时我们看到了日志结构存储B树和列存储。在[第5章](ch5.md)讨论复制时,我们看到了单领导,多领导和无领导的方法。
如果你有一个问题,例如“我想存储一些数据并稍后再查询”,那么没有一个正确的解决方案,但是在不同的情况下,每种方法都是适当的。软件实现通常必须选择一种特定的方法。要使一个代码路径健壮并且很好地尝试在一个软件中执行所有操作几乎可以保证实现效果很差,这很难。 如果你有一个问题,例如“我想存储一些数据并稍后再查询”,那么没有一个正确的解决方案,但是在不同的情况下,每种方法都是适当的。软件实现通常必须选择一种特定的方法。要使一个代码路径健壮并且很好地尝试在一个软件中执行所有操作几乎可以保证实现效果很差,这很难。

2
ch5.md
View File

@ -199,7 +199,7 @@ PostgreSQL和Oracle等使用这种复制方法【16】。主要缺点是日志
因为滞后时间太长引入的不一致性,可不仅是一个理论问题,更是应用设计中会遇到的真实问题。本节将重点介绍三个由复制延迟问题的例子,并简述解决这些问题的一些方法。 因为滞后时间太长引入的不一致性,可不仅是一个理论问题,更是应用设计中会遇到的真实问题。本节将重点介绍三个由复制延迟问题的例子,并简述解决这些问题的一些方法。
### 读之写 ### 读之写
许多应用程序让用户提交一些数据,然后查看他们提交的内容。可能是用户数据库中的记录,也可能是对讨论主题的评论,或其他类似的内容。提交新数据时,必须将其发送给领导者,但是当用户查看数据时,可以从追随者读取。如果数据经常被查看,但只是偶尔写入,这是非常合适的。 许多应用程序让用户提交一些数据,然后查看他们提交的内容。可能是用户数据库中的记录,也可能是对讨论主题的评论,或其他类似的内容。提交新数据时,必须将其发送给领导者,但是当用户查看数据时,可以从追随者读取。如果数据经常被查看,但只是偶尔写入,这是非常合适的。

2
ch8.md
View File

@ -18,7 +18,7 @@
最近几章中反复出现的主题是,系统如何处理错误的事情。例如,我们讨论了**副本故障转移**(“[处理节点中断](#ch5.md#处理节点宕机)”),**复制延迟**(“[复制延迟问题](ch6.md#复制延迟问题)”)和事务控制(“[弱隔离级别](ch7.md#弱隔离级别)”)。当我们了解可能在实际系统中出现的各种边缘情况时,我们会更好地处理它们。 最近几章中反复出现的主题是,系统如何处理错误的事情。例如,我们讨论了**副本故障转移**(“[处理节点中断](#ch5.md#处理节点宕机)”),**复制延迟**(“[复制延迟问题](ch6.md#复制延迟问题)”)和事务控制(“[弱隔离级别](ch7.md#弱隔离级别)”)。当我们了解可能在实际系统中出现的各种边缘情况时,我们会更好地处理它们。
但是,尽管我们已经谈了很多错误,但最后几章仍然过于乐观。现实更加黑暗。我们现在将悲观主义最大化,假设任何可能出错的东西**都会**出错[^i]。(经验丰富的系统运维会告诉你,这是一个合理的假设。如果你问得好,他们可能会一边治疗心理创伤一边告诉你一些可怕的故事) 但是,尽管我们已经谈了很多错误,但之前几章仍然过于乐观。现实更加黑暗。我们现在将悲观主义最大化,假设任何可能出错的东西**都会**出错[^i]。(经验丰富的系统运维会告诉你,这是一个合理的假设。如果你问得好,他们可能会一边治疗心理创伤一边告诉你一些可怕的故事)
[^i]: 除了一个例外:我们将假定故障是非拜占庭式的(参见“[拜占庭故障](#拜占庭故障)”)。 [^i]: 除了一个例外:我们将假定故障是非拜占庭式的(参见“[拜占庭故障](#拜占庭故障)”)。

8
ch9.md
View File

@ -114,7 +114,7 @@
在[图9-4]()中,除了读写之外,还增加了第三种类型的操作: 在[图9-4]()中,除了读写之外,还增加了第三种类型的操作:
* $cas(x, v_{old}, v_{new})⇒r$ 表示客户端请求进行原子性的[**比较与设置**](ch7.md#比较并设置CAS)操作。如果寄存器 $x$ 的当前值等于 $v_{old}$ ,则应该原子地设置为 $v_{new}$ 。如果 $x≠vold$ ,则操作应该保持寄存器不变并返回一个错误。 $r$ 是数据库的响应(正确或错误)。 * $cas(x, v_{old}, v_{new})⇒r$ 表示客户端请求进行原子性的[**比较与设置**](ch7.md#比较并设置CAS)操作。如果寄存器 $x$ 的当前值等于 $v_{old}$ ,则应该原子地设置为 $v_{new}$ 。如果 $x≠v_{old}$ ,则操作应该保持寄存器不变并返回一个错误。 $r$ 是数据库的响应(正确或错误)。
[图9-4]()中的每个操作都在我们认为执行操作的时候用竖线标出(在每个操作的条柱之内)。这些标记按顺序连在一起,其结果必须是一个有效的寄存器读写序列(**每次读取都必须返回最近一次写入设置的值**)。 [图9-4]()中的每个操作都在我们认为执行操作的时候用竖线标出(在每个操作的条柱之内)。这些标记按顺序连在一起,其结果必须是一个有效的寄存器读写序列(**每次读取都必须返回最近一次写入设置的值**)。
@ -216,7 +216,7 @@
***共识算法(线性一致)*** ***共识算法(线性一致)***
一些在本章后面讨论的共识算法,与单领导者复制类似。然而,共识协议包含防止脑裂和陈旧副本的措施。由于这些细节,协调算法可以安全地实现线性一致性存储。例如Zookeeper 【21】和etcd 【22】就是这样工作的。 一些在本章后面讨论的共识算法,与单领导者复制类似。然而,共识协议包含防止脑裂和陈旧副本的措施。由于这些细节,共识算法可以安全地实现线性一致性存储。例如Zookeeper 【21】和etcd 【22】就是这样工作的。
***多主复制(非线性一致)*** ***多主复制(非线性一致)***
@ -252,7 +252,7 @@
一些复制方法可以提供线性一致性,另一些复制方法则不能,因此深入地探讨线性一致性的优缺点是很有趣的。 一些复制方法可以提供线性一致性,另一些复制方法则不能,因此深入地探讨线性一致性的优缺点是很有趣的。
我们已经在[第五章中讨论了不同复制方法的一些用例。例如对多数据中心的复制而言,多主复制通常是理想的选择(参阅“[运维多个数据中心](ch5.md#运维多个数据中心)”)。[图9-7](img/fig9-7.png)说明了这种部署的一个例子。 我们已经在[第五章](ch5.md)中讨论了不同复制方法的一些用例。例如对多数据中心的复制而言,多主复制通常是理想的选择(参阅“[运维多个数据中心](ch5.md#运维多个数据中心)”)。[图9-7](img/fig9-7.png)说明了这种部署的一个例子。
![](img/fig9-7.png) ![](img/fig9-7.png)
@ -450,7 +450,7 @@ CAP定理的正式定义仅限于很狭隘的范围【30】它只考虑了一
虽然兰伯特时间戳定义了一个与因果一致的全序,但它还不足以解决分布式系统中的许多常见问题。 虽然兰伯特时间戳定义了一个与因果一致的全序,但它还不足以解决分布式系统中的许多常见问题。
例如,考虑一个需要确保用户名能唯一标识用户帐户的系统。如果两个用户同时尝试使用相同的用户名创建帐户,则其中一个应该成功,另一个应该失败。 (我们之前在“[领导者与锁定]](ch8.md#领导者与锁定)”中提到过这个问题。) 例如,考虑一个需要确保用户名能唯一标识用户帐户的系统。如果两个用户同时尝试使用相同的用户名创建帐户,则其中一个应该成功,另一个应该失败。 (我们之前在“[领导者与锁定](ch8.md#领导者与锁定)”中提到过这个问题。)
乍看之下,似乎操作的全序关系足以解决这一问题(例如使用兰伯特时间戳):如果创建了两个具有相同用户名的帐户,选择时间戳较小的那个作为胜者(第一个抓到用户名的人),并让带有更大时间戳者失败。由于时间戳上有全序关系,所以这个比较总是可行的。 乍看之下,似乎操作的全序关系足以解决这一问题(例如使用兰伯特时间戳):如果创建了两个具有相同用户名的帐户,选择时间戳较小的那个作为胜者(第一个抓到用户名的人),并让带有更大时间戳者失败。由于时间戳上有全序关系,所以这个比较总是可行的。