mirror of
https://github.com/Vonng/ddia.git
synced 2025-01-05 15:30:06 +08:00
fix a comma
This commit is contained in:
parent
247fb1f647
commit
1c20fe3b37
2
ch10.md
2
ch10.md
@ -28,7 +28,7 @@ Web 和越来越多的基于 HTTP/REST 的 API 使交互的请求 / 响应风格
|
||||
|
||||
流处理介于在线和离线(批处理)之间,所以有时候被称为 **准实时(near-real-time)** 或 **准在线(nearline)** 处理。像批处理系统一样,流处理消费输入并产生输出(并不需要响应请求)。但是,流式作业在事件发生后不久就会对事件进行操作,而批处理作业则需等待固定的一组输入数据。这种差异使流处理系统比起批处理系统具有更低的延迟。由于流处理基于批处理,我们将在 [第十一章](ch11.md) 讨论它。
|
||||
|
||||
正如我们将在本章中看到的那样,批处理是构建可靠、可伸缩和可维护应用程序的重要组成部分。例如,2004 年发布的批处理算法 Map-Reduce(可能被过分热情地)被称为 “造就 Google 大规模可伸缩性的算法”【2】。随后在各种开源数据系统中得到应用,包括 Hadoop,CouchDB 和 MongoDB。
|
||||
正如我们将在本章中看到的那样,批处理是构建可靠、可伸缩和可维护应用程序的重要组成部分。例如,2004 年发布的批处理算法 Map-Reduce(可能被过分热情地)被称为 “造就 Google 大规模可伸缩性的算法”【2】。随后在各种开源数据系统中得到应用,包括 Hadoop、CouchDB 和 MongoDB。
|
||||
|
||||
与多年前为数据仓库开发的并行处理系统【3,4】相比,MapReduce 是一个相当低级别的编程模型,但它使得在商用硬件上能进行的处理规模迈上一个新的台阶。虽然 MapReduce 的重要性正在下降【5】,但它仍然值得去理解,因为它描绘了一幅关于批处理为什么有用,以及如何做到有用的清晰图景。
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user