update PR list and zh-tw content

This commit is contained in:
Gang Yin 2023-12-28 21:00:40 +08:00
parent b9abceffce
commit 0db988863b
4 changed files with 7 additions and 3 deletions

View File

@ -150,6 +150,8 @@
| ISSUE & Pull Requests | USER | Title | | ISSUE & Pull Requests | USER | Title |
| ----------------------------------------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | | ----------------------------------------------- | ------------------------------------------------------------ | ------------------------------------------------------------ |
| [336](https://github.com/Vonng/ddia/pull/336) | [@YKIsTheBest](https://github.com/YKIsTheBest) | ch1: 优化一处翻译 |
| [335](https://github.com/Vonng/ddia/pull/335) | [@kimi0230](https://github.com/kimi0230) | 修正一处繁体中文错误 |
| [334](https://github.com/Vonng/ddia/pull/334) | [@soulrrrrr](https://github.com/soulrrrrr) | ch2: 修正一处繁体中文错误 | | [334](https://github.com/Vonng/ddia/pull/334) | [@soulrrrrr](https://github.com/soulrrrrr) | ch2: 修正一处繁体中文错误 |
| [332](https://github.com/Vonng/ddia/pull/332) | [@justlorain](https://github.com/justlorain) | ch5: 修正一处翻译错误 | | [332](https://github.com/Vonng/ddia/pull/332) | [@justlorain](https://github.com/justlorain) | ch5: 修正一处翻译错误 |
| [331](https://github.com/Vonng/ddia/pull/331) | [@Lyianu](https://github.com/Lyianu) | ch9: 更正几处拼写错误 | | [331](https://github.com/Vonng/ddia/pull/331) | [@Lyianu](https://github.com/Lyianu) | ch9: 更正几处拼写错误 |

2
ch1.md
View File

@ -241,7 +241,7 @@
> >
> 在多重调用的后端服务里,高百分位数变得特别重要。即使并行调用,最终用户请求仍然需要等待最慢的并行调用完成。如 [图 1-5](img/fig1-5.png) 所示只需要一个缓慢的调用就可以使整个最终用户请求变慢。即使只有一小部分后端调用速度较慢如果最终用户请求需要多个后端调用则获得较慢调用的机会也会增加因此较高比例的最终用户请求速度会变慢效果称为尾部延迟放大【24】 > 在多重调用的后端服务里,高百分位数变得特别重要。即使并行调用,最终用户请求仍然需要等待最慢的并行调用完成。如 [图 1-5](img/fig1-5.png) 所示只需要一个缓慢的调用就可以使整个最终用户请求变慢。即使只有一小部分后端调用速度较慢如果最终用户请求需要多个后端调用则获得较慢调用的机会也会增加因此较高比例的最终用户请求速度会变慢效果称为尾部延迟放大【24】
> >
> 如果你想将响应时间百分点添加到你的服务的监视仪表板则需要持续有效地计算它们。例如你可以使用滑动窗口来跟踪连续10分钟内的请求响应时间。每一分钟你都会计算出该窗中的响应时间中值和各种百分数,并将这些度量值绘制在图上。 > 如果你想将响应时间百分点添加到你的服务的监视仪表板则需要持续有效地计算它们。例如你可以使用滑动窗口来跟踪连续10分钟内的请求响应时间。每一分钟你都会计算出该窗中的响应时间中值和各种百分数,并将这些度量值绘制在图上。
> >
> 简单的实现是在时间窗口内保存所有请求的响应时间列表,并且每分钟对列表进行排序。如果对你来说效率太低,那么有一些算法能够以最小的 CPU 和内存成本如前向衰减【25】、t-digest【26】或 HdrHistogram 【27】来计算百分位数的近似值。请注意平均百分比例如减少时间分辨率或合并来自多台机器的数据在数学上没有意义 - 聚合响应时间数据的正确方法是添加直方图【28】。 > 简单的实现是在时间窗口内保存所有请求的响应时间列表,并且每分钟对列表进行排序。如果对你来说效率太低,那么有一些算法能够以最小的 CPU 和内存成本如前向衰减【25】、t-digest【26】或 HdrHistogram 【27】来计算百分位数的近似值。请注意平均百分比例如减少时间分辨率或合并来自多台机器的数据在数学上没有意义 - 聚合响应时间数据的正确方法是添加直方图【28】。

View File

@ -150,6 +150,8 @@
| ISSUE & Pull Requests | USER | Title | | ISSUE & Pull Requests | USER | Title |
| ----------------------------------------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | | ----------------------------------------------- | ------------------------------------------------------------ | ------------------------------------------------------------ |
| [336](https://github.com/Vonng/ddia/pull/336) | [@YKIsTheBest](https://github.com/YKIsTheBest) | ch1: 最佳化一處翻譯 |
| [335](https://github.com/Vonng/ddia/pull/335) | [@kimi0230](https://github.com/kimi0230) | 修正一處繁體中文錯誤 |
| [334](https://github.com/Vonng/ddia/pull/334) | [@soulrrrrr](https://github.com/soulrrrrr) | ch2: 修正一處繁體中文錯誤 | | [334](https://github.com/Vonng/ddia/pull/334) | [@soulrrrrr](https://github.com/soulrrrrr) | ch2: 修正一處繁體中文錯誤 |
| [332](https://github.com/Vonng/ddia/pull/332) | [@justlorain](https://github.com/justlorain) | ch5: 修正一處翻譯錯誤 | | [332](https://github.com/Vonng/ddia/pull/332) | [@justlorain](https://github.com/justlorain) | ch5: 修正一處翻譯錯誤 |
| [331](https://github.com/Vonng/ddia/pull/331) | [@Lyianu](https://github.com/Lyianu) | ch9: 更正幾處拼寫錯誤 | | [331](https://github.com/Vonng/ddia/pull/331) | [@Lyianu](https://github.com/Lyianu) | ch9: 更正幾處拼寫錯誤 |

View File

@ -241,7 +241,7 @@
> >
> 在多重呼叫的後端服務裡,高百分位數變得特別重要。即使並行呼叫,終端使用者請求仍然需要等待最慢的並行呼叫完成。如 [圖 1-5](../img/fig1-5.png) 所示只需要一個緩慢的呼叫就可以使整個終端使用者請求變慢。即使只有一小部分後端呼叫速度較慢如果終端使用者請求需要多個後端呼叫則獲得較慢呼叫的機會也會增加因此較高比例的終端使用者請求速度會變慢效果稱為尾部延遲放大【24】 > 在多重呼叫的後端服務裡,高百分位數變得特別重要。即使並行呼叫,終端使用者請求仍然需要等待最慢的並行呼叫完成。如 [圖 1-5](../img/fig1-5.png) 所示只需要一個緩慢的呼叫就可以使整個終端使用者請求變慢。即使只有一小部分後端呼叫速度較慢如果終端使用者請求需要多個後端呼叫則獲得較慢呼叫的機會也會增加因此較高比例的終端使用者請求速度會變慢效果稱為尾部延遲放大【24】
> >
> 如果你想將響應時間百分點新增到你的服務的監視儀表板,則需要持續有效地計算它們。例如,你可能希望在最近 10 分鐘內保持請求響應時間的滾動視窗。每一分鐘,你都會計算出該視窗中的中值和各種百分數,並將這些度量值繪製在圖上。 > 如果你想將響應時間百分點新增到你的服務的監視儀表板,則需要持續有效地計算它們。例如,你可以使用滑動視窗來跟蹤連續10分鐘內的請求響應時間。每一分鐘,你都會計算出該視窗中的響應時間中值和各種百分數,並將這些度量值繪製在圖上。
> >
> 簡單的實現是在時間視窗內儲存所有請求的響應時間列表,並且每分鐘對列表進行排序。如果對你來說效率太低,那麼有一些演算法能夠以最小的 CPU 和記憶體成本如前向衰減【25】、t-digest【26】或 HdrHistogram 【27】來計算百分位數的近似值。請注意平均百分比例如減少時間解析度或合併來自多臺機器的資料在數學上沒有意義 - 聚合響應時間資料的正確方法是新增直方圖【28】。 > 簡單的實現是在時間視窗內儲存所有請求的響應時間列表,並且每分鐘對列表進行排序。如果對你來說效率太低,那麼有一些演算法能夠以最小的 CPU 和記憶體成本如前向衰減【25】、t-digest【26】或 HdrHistogram 【27】來計算百分位數的近似值。請注意平均百分比例如減少時間解析度或合併來自多臺機器的資料在數學上沒有意義 - 聚合響應時間資料的正確方法是新增直方圖【28】。