mirror of
https://github.com/LCTT/TranslateProject.git
synced 2025-01-07 22:11:09 +08:00
518 lines
20 KiB
Markdown
518 lines
20 KiB
Markdown
[#]: collector: (lujun9972)
|
||
[#]: translator: (tanloong)
|
||
[#]: reviewer: (wxy)
|
||
[#]: publisher: (wxy)
|
||
[#]: url: (https://linux.cn/article-13602-1.html)
|
||
[#]: subject: (An advanced guide to NLP analysis with Python and NLTK)
|
||
[#]: via: (https://opensource.com/article/20/8/nlp-python-nltk)
|
||
[#]: author: (Girish Managoli https://opensource.com/users/gammay)
|
||
|
||
进阶教程:用 Python 和 NLTK 进行 NLP 分析
|
||
======
|
||
|
||
> 进一步学习自然语言处理的基本概念
|
||
|
||
![](https://img.linux.net.cn/data/attachment/album/202107/21/115633k8l9nkqowqkowpwm.jpg)
|
||
|
||
在 [之前的文章][2] 里,我介绍了<ruby>自然语言处理<rt>natural language processing</rt></ruby>(NLP)和宾夕法尼亚大学研发的<ruby>自然语言处理工具包<rt>Natural Language Toolkit</rt></ruby> ([NLTK][3])。我演示了用 Python 解析文本和定义<ruby>停顿词<rt>stopword</rt></ruby>的方法,并介绍了<ruby>语料库<rt>corpus</rt></ruby>的概念。语料库是由文本构成的数据集,通过提供现成的文本数据来辅助文本处理。在这篇文章里,我将继续用各种语料库对文本进行对比和分析。
|
||
|
||
这篇文章主要包括以下部分:
|
||
|
||
* <ruby>词网<rt>WordNet</rt></ruby>和<ruby>同义词集<rt>synset</rt></ruby>
|
||
* <ruby>相似度比较<rt>Similarity comparison</rt></ruby>
|
||
* <ruby>树<rt>Tree</rt></ruby>和<ruby>树库<rt>treebank</rt></ruby>
|
||
* <ruby>命名实体识别<rt>Named entity recognition</rt></ruby>
|
||
|
||
### 词网和同义词集
|
||
|
||
<ruby>[词网][4]<rt>WordNet</rt></ruby> 是 NLTK 里的一个大型词汇数据库语料库。词网包含各单词的诸多<ruby>认知同义词<rt>cognitive synonyms</rt></ruby>(认知同义词常被称作“<ruby>同义词集<rt>synset</rt></ruby>”)。在词网里,名词、动词、形容词和副词,各自被组织成一个同义词的网络。
|
||
|
||
词网是一个很有用的文本分析工具。它有面向多种语言的版本(汉语、英语、日语、俄语和西班牙语等),也使用多种许可证(从开源许可证到商业许可证都有)。初代版本的词网由普林斯顿大学研发,面向英语,使用<ruby>类 MIT 许可证<rt>MIT-like license</rt></ruby>。
|
||
|
||
因为一个词可能有多个意义或多个词性,所以可能与多个同义词集相关联。每个同义词集通常提供下列属性:
|
||
|
||
|**属性** | **定义** | **例子**|
|
||
|---|---|---|
|
||
|<ruby>名称<rt>Name</rt></ruby>| 此同义词集的名称 | 单词 `code` 有 5 个同义词集,名称分别是 `code.n.01`、 `code.n.02`、 `code.n.03`、`code.v.01` 和 `code.v.02`|
|
||
|<ruby>词性<rt>POS</rt></ruby>| 此同义词集的词性 | 单词 `code` 有 3 个名词词性的同义词集和 2 个动词词性的同义词集|
|
||
|<ruby>定义<rt>Definition</rt></ruby>| 该词作对应词性时的定义 | 动词 `code` 的一个定义是:(计算机科学)数据或计算机程序指令的<ruby>象征性排列<rt>symbolic arrangement</rt></ruby>|
|
||
|<ruby>例子<rt>Example</rt></ruby>| 使用该词的例子 | `code` 一词的例子:We should encode the message for security reasons|
|
||
|<ruby>词元<rt>Lemma</rt></ruby>| 与该词相关联的其他同义词集(包括那些不一定严格地是该词的同义词,但可以大体看作同义词的);词元直接与其他词元相关联,而不是直接与<ruby>单词<rt>word</rt></ruby>相关联|`code.v.02` 的词元是 `code.v.02.encipher`、`code.v.02.cipher`、`code.v.02.cypher`、`code.v.02.encrypt`、`code.v.02.inscribe` 和 `code.v.02.write_in_code`|
|
||
|<ruby>反义词<rt>Antonym</rt></ruby>| 意思相反的词 | 词元 `encode.v.01.encode` 的反义词是 `decode.v.01.decode`|
|
||
|<ruby>上义词<rt>Hypernym</rt></ruby>|该词所属的一个范畴更大的词 | `code.v.01` 的一个上义词是 `tag.v.01`|
|
||
|<ruby>分项词<rt>Meronym</rt></ruby>| 属于该词组成部分的词 | `computer` 的一个分项词是 `chip` |
|
||
|<ruby>总项词<rt>Holonym</rt></ruby>| 该词作为组成部分所属的词 | `window` 的一个总项词是 `computer screen`|
|
||
|
||
同义词集还有一些其他属性,在 `<你的 Python 安装路径>/Lib/site-packages` 下的 `nltk/corpus/reader/wordnet.py`,你可以找到它们。
|
||
|
||
下面的代码或许可以帮助理解。
|
||
|
||
这个函数:
|
||
|
||
```
|
||
from nltk.corpus import wordnet
|
||
|
||
def synset_info(synset):
|
||
print("Name", synset.name())
|
||
print("POS:", synset.pos())
|
||
print("Definition:", synset.definition())
|
||
print("Examples:", synset.examples())
|
||
print("Lemmas:", synset.lemmas())
|
||
print("Antonyms:", [lemma.antonyms() for lemma in synset.lemmas() if len(lemma.antonyms()) > 0])
|
||
print("Hypernyms:", synset.hypernyms())
|
||
print("Instance Hypernyms:", synset.instance_hypernyms())
|
||
print("Part Holonyms:", synset.part_holonyms())
|
||
print("Part Meronyms:", synset.part_meronyms())
|
||
print()
|
||
|
||
|
||
synsets = wordnet.synsets('code')
|
||
print(len(synsets), "synsets:")
|
||
for synset in synsets:
|
||
synset_info(synset)
|
||
```
|
||
|
||
将会显示:
|
||
|
||
```
|
||
5 synsets:
|
||
Name code.n.01
|
||
POS: n
|
||
Definition: a set of rules or principles or laws (especially written ones)
|
||
Examples: []
|
||
Lemmas: [Lemma('code.n.01.code'), Lemma('code.n.01.codification')]
|
||
Antonyms: []
|
||
Hypernyms: [Synset('written_communication.n.01')]
|
||
Instance Hpernyms: []
|
||
Part Holonyms: []
|
||
Part Meronyms: []
|
||
|
||
...
|
||
|
||
Name code.n.03
|
||
POS: n
|
||
Definition: (computer science) the symbolic arrangement of data or instructions in a computer program or the set of such instructions
|
||
Examples: []
|
||
Lemmas: [Lemma('code.n.03.code'), Lemma('code.n.03.computer_code')]
|
||
Antonyms: []
|
||
Hypernyms: [Synset('coding_system.n.01')]
|
||
Instance Hpernyms: []
|
||
Part Holonyms: []
|
||
Part Meronyms: []
|
||
|
||
...
|
||
|
||
Name code.v.02
|
||
POS: v
|
||
Definition: convert ordinary language into code
|
||
Examples: ['We should encode the message for security reasons']
|
||
Lemmas: [Lemma('code.v.02.code'), Lemma('code.v.02.encipher'), Lemma('code.v.02.cipher'), Lemma('code.v.02.cypher'), Lemma('code.v.02.encrypt'), Lemma('code.v.02.inscribe'), Lemma('code.v.02.write_in_code')]
|
||
Antonyms: []
|
||
Hypernyms: [Synset('encode.v.01')]
|
||
Instance Hpernyms: []
|
||
Part Holonyms: []
|
||
Part Meronyms: []
|
||
```
|
||
|
||
<ruby>同义词集<rt>synset</rt></ruby>和<ruby>词元<rt>lemma</rt></ruby>在词网里是按照树状结构组织起来的,下面的代码会给出直观的展现:
|
||
|
||
```
|
||
def hypernyms(synset):
|
||
return synset.hypernyms()
|
||
|
||
synsets = wordnet.synsets('soccer')
|
||
for synset in synsets:
|
||
print(synset.name() + " tree:")
|
||
pprint(synset.tree(rel=hypernyms))
|
||
print()
|
||
```
|
||
|
||
```
|
||
code.n.01 tree:
|
||
[Synset('code.n.01'),
|
||
[Synset('written_communication.n.01'),
|
||
...
|
||
|
||
code.n.02 tree:
|
||
[Synset('code.n.02'),
|
||
[Synset('coding_system.n.01'),
|
||
...
|
||
|
||
code.n.03 tree:
|
||
[Synset('code.n.03'),
|
||
...
|
||
|
||
code.v.01 tree:
|
||
[Synset('code.v.01'),
|
||
[Synset('tag.v.01'),
|
||
...
|
||
|
||
code.v.02 tree:
|
||
[Synset('code.v.02'),
|
||
[Synset('encode.v.01'),
|
||
...
|
||
```
|
||
|
||
词网并没有涵盖所有的单词和其信息(现今英语有约 17,0000 个单词,最新版的 词网 涵盖了约 15,5000 个),但它开了个好头。掌握了“词网”的各个概念后,如果你觉得它词汇少,不能满足你的需要,可以转而使用其他工具。或者,你也可以打造自己的“词网”!
|
||
|
||
#### 自主尝试
|
||
|
||
使用 Python 库,下载维基百科的 “[open source][5]” 页面,并列出该页面所有单词的<ruby>同义词集<rt>synset</rt></ruby>和<ruby>词元<rt>lemma</rt></ruby>。
|
||
|
||
### 相似度比较
|
||
|
||
相似度比较的目的是识别出两篇文本的相似度,在搜索引擎、聊天机器人等方面有很多应用。
|
||
|
||
比如,相似度比较可以识别 `football` 和 `soccer` 是否有相似性。
|
||
|
||
```
|
||
syn1 = wordnet.synsets('football')
|
||
syn2 = wordnet.synsets('soccer')
|
||
|
||
# 一个单词可能有多个 同义词集,需要把 word1 的每个同义词集和 word2 的每个同义词集分别比较
|
||
for s1 in syn1:
|
||
for s2 in syn2:
|
||
print("Path similarity of: ")
|
||
print(s1, '(', s1.pos(), ')', '[', s1.definition(), ']')
|
||
print(s2, '(', s2.pos(), ')', '[', s2.definition(), ']')
|
||
print(" is", s1.path_similarity(s2))
|
||
print()
|
||
```
|
||
|
||
```
|
||
Path similarity of:
|
||
Synset('football.n.01') ( n ) [ any of various games played with a ball (round or oval) in which two teams try to kick or carry or propel the ball into each other's goal ]
|
||
Synset('soccer.n.01') ( n ) [ a football game in which two teams of 11 players try to kick or head a ball into the opponents' goal ]
|
||
is 0.5
|
||
|
||
Path similarity of:
|
||
Synset('football.n.02') ( n ) [ the inflated oblong ball used in playing American football ]
|
||
Synset('soccer.n.01') ( n ) [ a football game in which two teams of 11 players try to kick or head a ball into the opponents' goal ]
|
||
is 0.05
|
||
```
|
||
|
||
两个词各个同义词集之间<ruby>路径相似度<rt>path similarity</rt></ruby>最大的是 0.5,表明它们关联性很大([<ruby>路径相似度<rt>path similarity</rt></ruby>][6]指两个词的意义在<ruby>上下义关系的词汇分类结构<rt>hypernym/hypnoym taxonomy</rt></ruby>中的最短距离)。
|
||
|
||
那么 `code` 和 `bug` 呢?这两个计算机领域的词的相似度是:
|
||
|
||
```
|
||
Path similarity of:
|
||
Synset('code.n.01') ( n ) [ a set of rules or principles or laws (especially written ones) ]
|
||
Synset('bug.n.02') ( n ) [ a fault or defect in a computer program, system, or machine ]
|
||
is 0.1111111111111111
|
||
...
|
||
Path similarity of:
|
||
Synset('code.n.02') ( n ) [ a coding system used for transmitting messages requiring brevity or secrecy ]
|
||
Synset('bug.n.02') ( n ) [ a fault or defect in a computer program, system, or machine ]
|
||
is 0.09090909090909091
|
||
...
|
||
Path similarity of:
|
||
Synset('code.n.03') ( n ) [ (computer science) the symbolic arrangement of data or instructions in a computer program or the set of such instructions ]
|
||
Synset('bug.n.02') ( n ) [ a fault or defect in a computer program, system, or machine ]
|
||
is 0.09090909090909091
|
||
```
|
||
|
||
这些是这两个词各同义词集之间<ruby>路径相似度<rt>path similarity</rt></ruby>的最大值,这些值表明两个词是有关联性的。
|
||
|
||
NLTK 提供多种<ruby>相似度计分器<rt>similarity scorers</rt></ruby>,比如:
|
||
|
||
* path_similarity
|
||
* lch_similarity
|
||
* wup_similarity
|
||
* res_similarity
|
||
* jcn_similarity
|
||
* lin_similarity
|
||
|
||
要进一步了解这些<ruby>相似度计分器<rt>similarity scorers</rt></ruby>,请查看 [WordNet Interface][6] 的 Similarity 部分。
|
||
|
||
#### 自主尝试
|
||
|
||
使用 Python 库,从维基百科的 [Category: Lists of computer terms][7] 生成一个术语列表,然后计算各术语之间的相似度。
|
||
|
||
### 树和树库
|
||
|
||
使用 NLTK,你可以把文本表示成树状结构以便进行分析。
|
||
|
||
这里有一个例子:
|
||
|
||
这是一份简短的文本,对其做预处理和词性标注:
|
||
|
||
```
|
||
import nltk
|
||
|
||
text = "I love open source"
|
||
# Tokenize to words
|
||
words = nltk.tokenize.word_tokenize(text)
|
||
# POS tag the words
|
||
words_tagged = nltk.pos_tag(words)
|
||
```
|
||
|
||
要把文本转换成树状结构,你必须定义一个<ruby>语法<rt>grammar</rt></ruby>。这个例子里用的是一个基于 [Penn Treebank tags][8] 的简单语法。
|
||
|
||
```
|
||
# A simple grammar to create tree
|
||
grammar = "NP: {<JJ><NN>}"
|
||
```
|
||
|
||
然后用这个<ruby>语法<rt>grammar</rt></ruby>创建一颗<ruby>树<rt>tree</rt></ruby>:
|
||
|
||
```
|
||
# Create tree
|
||
parser = nltk.RegexpParser(grammar)
|
||
tree = parser.parse(words_tagged)
|
||
pprint(tree)
|
||
```
|
||
|
||
运行上面的代码,将得到:
|
||
|
||
```
|
||
Tree('S', [('I', 'PRP'), ('love', 'VBP'), Tree('NP', [('open', 'JJ'), ('source', 'NN')])])
|
||
```
|
||
|
||
你也可以图形化地显示结果。
|
||
|
||
```
|
||
tree.draw()
|
||
```
|
||
|
||
![NLTK Tree][9]
|
||
|
||
这个树状结构有助于准确解读文本的意思。比如,用它可以找到文本的 [主语][11]:
|
||
|
||
```
|
||
subject_tags = ["NN", "NNS", "NP", "NNP", "NNPS", "PRP", "PRP$"]
|
||
def subject(sentence_tree):
|
||
for tagged_word in sentence_tree:
|
||
# A crude logic for this case - first word with these tags is considered subject
|
||
if tagged_word[1] in subject_tags:
|
||
return tagged_word[0]
|
||
|
||
print("Subject:", subject(tree))
|
||
```
|
||
|
||
结果显示主语是 `I`:
|
||
|
||
```
|
||
Subject: I
|
||
```
|
||
|
||
这是一个比较基础的文本分析步骤,可以用到更广泛的应用场景中。 比如,在聊天机器人方面,如果用户告诉机器人:“给我妈妈 Jane 预订一张机票,1 月 1 号伦敦飞纽约的”,机器人可以用这种分析方法解读这个指令:
|
||
|
||
**动作**: 预订
|
||
**动作的对象**: 机票
|
||
**乘客**: Jane
|
||
**出发地**: 伦敦
|
||
**目的地**: 纽约
|
||
**日期**: (明年)1 月 1 号
|
||
|
||
<ruby>树库<rt>treebank</rt></ruby>指由许多预先标注好的<ruby>树<rt>tree</rt></ruby>构成的语料库。现在已经有面向多种语言的树库,既有开源的,也有限定条件下才能免费使用的,以及商用的。其中使用最广泛的是面向英语的宾州树库。宾州树库取材于<ruby>华尔街日报<rt>Wall Street Journal</rt></ruby>。NLTK 也包含了宾州树库作为一个子语料库。下面是一些使用<ruby>树库<rt>treebank</rt></ruby>的方法:
|
||
|
||
```
|
||
words = nltk.corpus.treebank.words()
|
||
print(len(words), "words:")
|
||
print(words)
|
||
|
||
tagged_sents = nltk.corpus.treebank.tagged_sents()
|
||
print(len(tagged_sents), "sentences:")
|
||
print(tagged_sents)
|
||
|
||
```
|
||
|
||
```
|
||
100676 words:
|
||
['Pierre', 'Vinken', ',', '61', 'years', 'old', ',', ...]
|
||
3914 sentences:
|
||
[[('Pierre', 'NNP'), ('Vinken', 'NNP'), (',', ','), ('61', 'CD'), ('years', 'NNS'), ('old', 'JJ'), (',', ','), ('will', 'MD'), ('join', 'VB'), ('the', 'DT'), ('board', 'NN'), ('as', 'IN'), ('a', 'DT'), ('nonexecutive', 'JJ'), ('director', 'NN'), ...]
|
||
```
|
||
|
||
查看一个句子里的各个<ruby>标签<rt>tags</rt></ruby>:
|
||
|
||
```
|
||
sent0 = tagged_sents[0]
|
||
pprint(sent0)
|
||
```
|
||
|
||
```
|
||
[('Pierre', 'NNP'),
|
||
('Vinken', 'NNP'),
|
||
(',', ','),
|
||
('61', 'CD'),
|
||
('years', 'NNS'),
|
||
...
|
||
```
|
||
|
||
定义一个<ruby>语法<rt>grammar</rt></ruby>来把这个句子转换成树状结构:
|
||
|
||
```
|
||
grammar = '''
|
||
Subject: {<NNP><NNP>}
|
||
SubjectInfo: {<CD><NNS><JJ>}
|
||
Action: {<MD><VB>}
|
||
Object: {<DT><NN>}
|
||
Stopwords: {<IN><DT>}
|
||
ObjectInfo: {<JJ><NN>}
|
||
When: {<NNP><CD>}
|
||
'''
|
||
parser = nltk.RegexpParser(grammar)
|
||
tree = parser.parse(sent0)
|
||
print(tree)
|
||
```
|
||
|
||
```
|
||
(S
|
||
(Subject Pierre/NNP Vinken/NNP)
|
||
,/,
|
||
(SubjectInfo 61/CD years/NNS old/JJ)
|
||
,/,
|
||
(Action will/MD join/VB)
|
||
(Object the/DT board/NN)
|
||
as/IN
|
||
a/DT
|
||
(ObjectInfo nonexecutive/JJ director/NN)
|
||
(Subject Nov./NNP)
|
||
29/CD
|
||
./.)
|
||
```
|
||
|
||
图形化地显示:
|
||
|
||
```
|
||
tree.draw()
|
||
```
|
||
|
||
![NLP Treebank image][12]
|
||
|
||
<ruby>树<rt>trees</rt></ruby>和<ruby>树库<rt>treebanks</rt></ruby>的概念是文本分析的一个强大的组成部分。
|
||
|
||
#### 自主尝试
|
||
|
||
使用 Python 库,下载维基百科的 “[open source][5]” 页面,将得到的文本以图形化的树状结构展现出来。
|
||
|
||
### 命名实体识别
|
||
|
||
无论口语还是书面语都包含着重要数据。文本处理的主要目标之一,就是提取出关键数据。几乎所有应用场景所需要提取关键数据,比如航空公司的订票机器人或者问答机器人。 NLTK 为此提供了一个<ruby>命名实体识别<rt>named entity recognition</rt></ruby>的功能。
|
||
|
||
这里有一个代码示例:
|
||
|
||
```
|
||
sentence = 'Peterson first suggested the name "open source" at Palo Alto, California'
|
||
```
|
||
|
||
验证这个句子里的<ruby>人名<rt>name</rt></ruby>和<ruby>地名<rt>place</rt></ruby>有没有被识别出来。照例先预处理:
|
||
|
||
```
|
||
import nltk
|
||
|
||
words = nltk.word_tokenize(sentence)
|
||
pos_tagged = nltk.pos_tag(words)
|
||
```
|
||
|
||
运行<ruby>命名实体标注器<rt>named-entity tagger</rt></ruby>:
|
||
|
||
```
|
||
ne_tagged = nltk.ne_chunk(pos_tagged)
|
||
print("NE tagged text:")
|
||
print(ne_tagged)
|
||
print()
|
||
```
|
||
|
||
```
|
||
NE tagged text:
|
||
(S
|
||
(PERSON Peterson/NNP)
|
||
first/RB
|
||
suggested/VBD
|
||
the/DT
|
||
name/NN
|
||
``/``
|
||
open/JJ
|
||
source/NN
|
||
''/''
|
||
at/IN
|
||
(FACILITY Palo/NNP Alto/NNP)
|
||
,/,
|
||
(GPE California/NNP))
|
||
```
|
||
|
||
上面的结果里,命名实体被识别出来并做了标注;只提取这个<ruby>树<rt>tree</rt></ruby>里的命名实体:
|
||
|
||
```
|
||
print("Recognized named entities:")
|
||
for ne in ne_tagged:
|
||
if hasattr(ne, "label"):
|
||
print(ne.label(), ne[0:])
|
||
```
|
||
|
||
```
|
||
Recognized named entities:
|
||
PERSON [('Peterson', 'NNP')]
|
||
FACILITY [('Palo', 'NNP'), ('Alto', 'NNP')]
|
||
GPE [('California', 'NNP')]
|
||
```
|
||
|
||
图形化地显示:
|
||
|
||
```
|
||
ne_tagged.draw()
|
||
```
|
||
|
||
![NLTK Treebank tree][13]
|
||
|
||
NLTK 内置的<ruby>命名实体标注器<rt>named-entity tagger</rt></ruby>,使用的是宾州法尼亚大学的 [Automatic Content Extraction][14](ACE)程序。该标注器能够识别<ruby>组织机构<rt>ORGANIZATION</rt></ruby><ruby>、人名<rt>PERSON</rt></ruby><ruby>、地名<rt>LOCATION</rt></ruby><ruby>、设施<rt>FACILITY</rt></ruby>和<ruby>地缘政治实体<rt>geopolitical entity</rt></ruby>等常见<ruby>实体<rt>entites</rt></ruby>。
|
||
|
||
NLTK 也可以使用其他<ruby>标注器<rt>tagger</rt></ruby>,比如 [Stanford Named Entity Recognizer][15]. 这个经过训练的标注器用 Java 写成,但 NLTK 提供了一个使用它的接口(详情请查看 [nltk.parse.stanford][16] 或 [nltk.tag.stanford][17])。
|
||
|
||
#### 自主尝试
|
||
|
||
使用 Python 库,下载维基百科的 “[open source][5]” 页面,并识别出对<ruby>开源<rt>open source</rt></ruby>有影响力的人的名字,以及他们为<ruby>开源<rt>open source</rt></ruby>做贡献的时间和地点。
|
||
|
||
### 高级实践
|
||
|
||
如果你准备好了,尝试用这篇文章以及此前的文章介绍的知识构建一个<ruby>超级结构<rt>superstructure</rt></ruby>。
|
||
|
||
使用 Python 库,下载维基百科的 “[Category: Computer science page][18]”,然后:
|
||
|
||
* 找出其中频率最高的<ruby>单词<rt>unigrams</rt></ruby><ruby>、二元搭配<rt>bigrams</rt></ruby>和<ruby>三元搭配<rt>trigrams</rt></ruby>,将它们作为一个关键词列表或者技术列表。相关领域的学生或者工程师需要了解这样一份列表里的内容。
|
||
* 图形化地显示这个领域里重要的人名、技术、日期和地点。这会是一份很棒的信息图。
|
||
* 构建一个搜索引擎。你的搜索引擎性能能够超过维基百科吗?
|
||
|
||
### 下一步?
|
||
|
||
自然语言处理是<ruby>应用构建<rt>application building</rt></ruby>的典型支柱。NLTK 是经典、丰富且强大的工具集,提供了为现实世界构建有吸引力、目标明确的应用的工作坊。
|
||
|
||
在这个系列的文章里,我用 NLTK 作为例子,展示了自然语言处理可以做什么。自然语言处理和 NLTK 还有太多东西值得探索,这个系列的文章只是帮助你探索它们的切入点。
|
||
|
||
如果你的需求增长到 NLTK 已经满足不了了,你可以训练新的模型或者向 NLTK 添加新的功能。基于 NLTK 构建的新的自然语言处理库正在不断涌现,机器学习也正被深度用于自然语言处理。
|
||
|
||
--------------------------------------------------------------------------------
|
||
|
||
via: https://opensource.com/article/20/8/nlp-python-nltk
|
||
|
||
作者:[Girish Managoli][a]
|
||
选题:[lujun9972][b]
|
||
译者:[tanloong](https://github.com/tanloong)
|
||
校对:[wxy](https://github.com/wxy)
|
||
|
||
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
|
||
|
||
[a]: https://opensource.com/users/gammay
|
||
[b]: https://github.com/lujun9972
|
||
[1]: https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/brain_computer_solve_fix_tool.png?itok=okq8joti (Brain on a computer screen)
|
||
[2]: https://opensource.com/article/20/8/intro-python-nltk
|
||
[3]: http://www.nltk.org/
|
||
[4]: https://en.wikipedia.org/wiki/WordNet
|
||
[5]: https://en.wikipedia.org/wiki/Open_source
|
||
[6]: https://www.nltk.org/howto/wordnet.html
|
||
[7]: https://en.wikipedia.org/wiki/Category:Lists_of_computer_terms
|
||
[8]: https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
|
||
[9]: https://opensource.com/sites/default/files/uploads/nltk-tree.jpg (NLTK Tree)
|
||
[10]: https://creativecommons.org/licenses/by-sa/4.0/
|
||
[11]: https://en.wikipedia.org/wiki/Subject_(grammar)
|
||
[12]: https://opensource.com/sites/default/files/uploads/nltk-treebank.jpg (NLP Treebank image)
|
||
[13]: https://opensource.com/sites/default/files/uploads/nltk-treebank-2a.jpg (NLTK Treebank tree)
|
||
[14]: https://www.ldc.upenn.edu/collaborations/past-projects/ace
|
||
[15]: https://nlp.stanford.edu/software/CRF-NER.html
|
||
[16]: https://www.nltk.org/_modules/nltk/parse/stanford.html
|
||
[17]: https://www.nltk.org/_modules/nltk/tag/stanford.html
|
||
[18]: https://en.wikipedia.org/wiki/Category:Computer_science
|