17 KiB
Writing a Linux Debugger Part 7: Source-level breakpoints
Setting breakpoints on memory addresses is all well and good, but it doesn’t provide the most user-friendly tool. We’d like to be able to set breakpoints on source lines and function entry addresses as well, so that we can debug at the same abstraction level as our code.
This post will add source-level breakpoints to our debugger. With all of the support we already have available to us, this is a lot easier than it may first sound. We’ll also add a command to get the type and address of a symbol, which can be useful for locating code or data and understanding linking concepts.
Series index
These links will go live as the rest of the posts are released.
-
Reading variables
-
Next steps
Breakpoints
DWARF
The Elves and dwarves post described how DWARF debug information works and how it can be used to map the machine code back to the high-level source. Recall that DWARF contains the address ranges of functions and a line table which lets you translate code positions between abstraction levels. We’ll be using these capabilities to implement our breakpoints.
Function entry
Setting breakpoints on function names can be complex if you want to take overloading, member functions and such into account, but we’re going to iterate through all of the compilation units and search for functions with names which match what we’re looking for. The DWARF information will look something like this:
< 0><0x0000000b> DW_TAG_compile_unit
DW_AT_producer clang version 3.9.1 (tags/RELEASE_391/final)
DW_AT_language DW_LANG_C_plus_plus
DW_AT_name /super/secret/path/MiniDbg/examples/variable.cpp
DW_AT_stmt_list 0x00000000
DW_AT_comp_dir /super/secret/path/MiniDbg/build
DW_AT_low_pc 0x00400670
DW_AT_high_pc 0x0040069c
LOCAL_SYMBOLS:
< 1><0x0000002e> DW_TAG_subprogram
DW_AT_low_pc 0x00400670
DW_AT_high_pc 0x0040069c
DW_AT_name foo
...
...
<14><0x000000b0> DW_TAG_subprogram
DW_AT_low_pc 0x00400700
DW_AT_high_pc 0x004007a0
DW_AT_name bar
...
We want to match against DW_AT_name
and use DW_AT_low_pc
(the start address of the function) to set our breakpoint.
void debugger::set_breakpoint_at_function(const std::string& name) {
for (const auto& cu : m_dwarf.compilation_units()) {
for (const auto& die : cu.root()) {
if (die.has(dwarf::DW_AT::name) && at_name(die) == name) {
auto low_pc = at_low_pc(die);
auto entry = get_line_entry_from_pc(low_pc);
++entry; //skip prologue
set_breakpoint_at_address(entry->address);
}
}
}
}
The only bit of that code which looks a bit weird is the ++entry
. The problem is that the DW_AT_low_pc
for a function doesn’t point at the start of the user code for that function, it points to the start of the prologue. The compiler will usually output a prologue and epilogue for a function which carries out saving and restoring registers, manipulating the stack pointer and suchlike. This isn’t very useful for us, so we increment the line entry by one to get the first line of the user code instead of the prologue. The DWARF line table actually has some functionality to mark an entry as the first line after the function prologue, but not all compilers output this, so I’ve taken the naive approach.
Source line
To set a breakpoint on a high-level source line, we translate this line number into an address by looking it up in the DWARF. We’ll iterate through the compilation units looking for one whose name matches the given file, then look for the entry which corresponds to the given line.
The DWARF will look something like this:
.debug_line: line number info for a single cu
Source lines (from CU-DIE at .debug_info offset 0x0000000b):
NS new statement, BB new basic block, ET end of text sequence
PE prologue end, EB epilogue begin
IS=val ISA number, DI=val discriminator value
<pc> [lno,col] NS BB ET PE EB IS= DI= uri: "filepath"
0x004004a7 [ 1, 0] NS uri: "/super/secret/path/a.hpp"
0x004004ab [ 2, 0] NS
0x004004b2 [ 3, 0] NS
0x004004b9 [ 4, 0] NS
0x004004c1 [ 5, 0] NS
0x004004c3 [ 1, 0] NS uri: "/super/secret/path/b.hpp"
0x004004c7 [ 2, 0] NS
0x004004ce [ 3, 0] NS
0x004004d5 [ 4, 0] NS
0x004004dd [ 5, 0] NS
0x004004df [ 4, 0] NS uri: "/super/secret/path/ab.cpp"
0x004004e3 [ 5, 0] NS
0x004004e8 [ 6, 0] NS
0x004004ed [ 7, 0] NS
0x004004f4 [ 7, 0] NS ET
So if we want to set a breakpoint on line 5 of ab.cpp
, we look up the entry which corresponds to that line (0x004004e3
) and set a breakpoint there.
void debugger::set_breakpoint_at_source_line(const std::string& file, unsigned line) {
for (const auto& cu : m_dwarf.compilation_units()) {
if (is_suffix(file, at_name(cu.root()))) {
const auto& lt = cu.get_line_table();
for (const auto& entry : lt) {
if (entry.is_stmt && entry.line == line) {
set_breakpoint_at_address(entry.address);
return;
}
}
}
}
}
My is_suffix
hack is there so you can type c.cpp
for a/b/c.cpp
. Of course you should actually use a sensible path handling library or something; I’m lazy. The entry.is_stmt
is checking that the line table entry is marked as the beginning of a statement, which is set by the compiler on the address it thinks is the best target for a breakpoint.
Symbol lookup
When we get down to the level of object files, symbols are king. Functions are named with symbols, global variables are named with symbols, you get a symbol, we get a symbol, everyone gets a symbol. In a given object file, some symbols might reference other object files or shared libraries, where the linker will patch things up to create an executable program from the symbol reference spaghetti.
Symbols can be looked up in the aptly-named symbol table, which is stored in ELF sections in the binary. Fortunately, libelfin
has a fairly nice interface for doing this, so we don’t need to deal with all of the ELF nonsense ourselves. To give you an idea of what we’re dealing with, here is a dump of the .symtab
section of a binary, produced with readelf
:
Num: Value Size Type Bind Vis Ndx Name
0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
1: 0000000000400238 0 SECTION LOCAL DEFAULT 1
2: 0000000000400254 0 SECTION LOCAL DEFAULT 2
3: 0000000000400278 0 SECTION LOCAL DEFAULT 3
4: 00000000004002c8 0 SECTION LOCAL DEFAULT 4
5: 0000000000400430 0 SECTION LOCAL DEFAULT 5
6: 00000000004004e4 0 SECTION LOCAL DEFAULT 6
7: 0000000000400508 0 SECTION LOCAL DEFAULT 7
8: 0000000000400528 0 SECTION LOCAL DEFAULT 8
9: 0000000000400558 0 SECTION LOCAL DEFAULT 9
10: 0000000000400570 0 SECTION LOCAL DEFAULT 10
11: 0000000000400714 0 SECTION LOCAL DEFAULT 11
12: 0000000000400720 0 SECTION LOCAL DEFAULT 12
13: 0000000000400724 0 SECTION LOCAL DEFAULT 13
14: 0000000000400750 0 SECTION LOCAL DEFAULT 14
15: 0000000000600e18 0 SECTION LOCAL DEFAULT 15
16: 0000000000600e20 0 SECTION LOCAL DEFAULT 16
17: 0000000000600e28 0 SECTION LOCAL DEFAULT 17
18: 0000000000600e30 0 SECTION LOCAL DEFAULT 18
19: 0000000000600ff0 0 SECTION LOCAL DEFAULT 19
20: 0000000000601000 0 SECTION LOCAL DEFAULT 20
21: 0000000000601018 0 SECTION LOCAL DEFAULT 21
22: 0000000000601028 0 SECTION LOCAL DEFAULT 22
23: 0000000000000000 0 SECTION LOCAL DEFAULT 23
24: 0000000000000000 0 SECTION LOCAL DEFAULT 24
25: 0000000000000000 0 SECTION LOCAL DEFAULT 25
26: 0000000000000000 0 SECTION LOCAL DEFAULT 26
27: 0000000000000000 0 SECTION LOCAL DEFAULT 27
28: 0000000000000000 0 SECTION LOCAL DEFAULT 28
29: 0000000000000000 0 SECTION LOCAL DEFAULT 29
30: 0000000000000000 0 SECTION LOCAL DEFAULT 30
31: 0000000000000000 0 FILE LOCAL DEFAULT ABS init.c
32: 0000000000000000 0 FILE LOCAL DEFAULT ABS crtstuff.c
33: 0000000000600e28 0 OBJECT LOCAL DEFAULT 17 __JCR_LIST__
34: 00000000004005a0 0 FUNC LOCAL DEFAULT 10 deregister_tm_clones
35: 00000000004005e0 0 FUNC LOCAL DEFAULT 10 register_tm_clones
36: 0000000000400620 0 FUNC LOCAL DEFAULT 10 __do_global_dtors_aux
37: 0000000000601028 1 OBJECT LOCAL DEFAULT 22 completed.6917
38: 0000000000600e20 0 OBJECT LOCAL DEFAULT 16 __do_global_dtors_aux_fin
39: 0000000000400640 0 FUNC LOCAL DEFAULT 10 frame_dummy
40: 0000000000600e18 0 OBJECT LOCAL DEFAULT 15 __frame_dummy_init_array_
41: 0000000000000000 0 FILE LOCAL DEFAULT ABS /super/secret/path/MiniDbg/
42: 0000000000000000 0 FILE LOCAL DEFAULT ABS crtstuff.c
43: 0000000000400818 0 OBJECT LOCAL DEFAULT 14 __FRAME_END__
44: 0000000000600e28 0 OBJECT LOCAL DEFAULT 17 __JCR_END__
45: 0000000000000000 0 FILE LOCAL DEFAULT ABS
46: 0000000000400724 0 NOTYPE LOCAL DEFAULT 13 __GNU_EH_FRAME_HDR
47: 0000000000601000 0 OBJECT LOCAL DEFAULT 20 _GLOBAL_OFFSET_TABLE_
48: 0000000000601028 0 OBJECT LOCAL DEFAULT 21 __TMC_END__
49: 0000000000601020 0 OBJECT LOCAL DEFAULT 21 __dso_handle
50: 0000000000600e20 0 NOTYPE LOCAL DEFAULT 15 __init_array_end
51: 0000000000600e18 0 NOTYPE LOCAL DEFAULT 15 __init_array_start
52: 0000000000600e30 0 OBJECT LOCAL DEFAULT 18 _DYNAMIC
53: 0000000000601018 0 NOTYPE WEAK DEFAULT 21 data_start
54: 0000000000400710 2 FUNC GLOBAL DEFAULT 10 __libc_csu_fini
55: 0000000000400570 43 FUNC GLOBAL DEFAULT 10 _start
56: 0000000000000000 0 NOTYPE WEAK DEFAULT UND __gmon_start__
57: 0000000000400714 0 FUNC GLOBAL DEFAULT 11 _fini
58: 0000000000000000 0 FUNC GLOBAL DEFAULT UND __libc_start_main@@GLIBC_
59: 0000000000400720 4 OBJECT GLOBAL DEFAULT 12 _IO_stdin_used
60: 0000000000601018 0 NOTYPE GLOBAL DEFAULT 21 __data_start
61: 00000000004006a0 101 FUNC GLOBAL DEFAULT 10 __libc_csu_init
62: 0000000000601028 0 NOTYPE GLOBAL DEFAULT 22 __bss_start
63: 0000000000601030 0 NOTYPE GLOBAL DEFAULT 22 _end
64: 0000000000601028 0 NOTYPE GLOBAL DEFAULT 21 _edata
65: 0000000000400670 44 FUNC GLOBAL DEFAULT 10 main
66: 0000000000400558 0 FUNC GLOBAL DEFAULT 9 _init
You can see lots of symbols for sections in the object file, symbols which are used by the implementation for setting up the environment, and at the end you can see the symbol for main
.
We’re interested in the type, name, and value (address) of the symbol. We’ll have a symbol_type
enum for the type and use a std::string
for the name and std::uintptr_t
for the address:
enum class symbol_type {
notype, // No type (e.g., absolute symbol)
object, // Data object
func, // Function entry point
section, // Symbol is associated with a section
file, // Source file associated with the
}; // object file
std::string to_string (symbol_type st) {
switch (st) {
case symbol_type::notype: return "notype";
case symbol_type::object: return "object";
case symbol_type::func: return "func";
case symbol_type::section: return "section";
case symbol_type::file: return "file";
}
}
struct symbol {
symbol_type type;
std::string name;
std::uintptr_t addr;
};
We’ll need to map between the symbol type we get from libelfin
and our enum since we don’t want the dependency poisoning this interface. Fortunately I picked the same names for everything, so this is dead easy:
symbol_type to_symbol_type(elf::stt sym) {
switch (sym) {
case elf::stt::notype: return symbol_type::notype;
case elf::stt::object: return symbol_type::object;
case elf::stt::func: return symbol_type::func;
case elf::stt::section: return symbol_type::section;
case elf::stt::file: return symbol_type::file;
default: return symbol_type::notype;
}
};
Lastly we want to look up the symbol. For illustrative purposes I loop through the sections of the ELF looking for symbol tables, then collect any symbols I find in them into a std::vector
. A smarter implementation would build up a map from names to symbols so that you only have to look at all the data once.
std::vector<symbol> debugger::lookup_symbol(const std::string& name) {
std::vector<symbol> syms;
for (auto &sec : m_elf.sections()) {
if (sec.get_hdr().type != elf::sht::symtab && sec.get_hdr().type != elf::sht::dynsym)
continue;
for (auto sym : sec.as_symtab()) {
if (sym.get_name() == name) {
auto &d = sym.get_data();
syms.push_back(symbol{to_symbol_type(d.type()), sym.get_name(), d.value});
}
}
}
return syms;
}
Adding commands
As always, we need to add some more commands to expose the functionality to users. For breakpoints I’ve gone for a GDB-style interface, where the kind of breakpoint is inferred from the argument you pass rather than requiring explicit switches:
-
0x<hexadecimal>
-> address breakpoint -
<line>:<filename>
-> line number breakpoint -
<anything else>
-> function name breakpoint
else if(is_prefix(command, "break")) {
if (args[1][0] == '0' && args[1][1] == 'x') {
std::string addr {args[1], 2};
set_breakpoint_at_address(std::stol(addr, 0, 16));
}
else if (args[1].find(':') != std::string::npos) {
auto file_and_line = split(args[1], ':');
set_breakpoint_at_source_line(file_and_line[0], std::stoi(file_and_line[1]));
}
else {
set_breakpoint_at_function(args[1]);
}
}
For symbols we’ll lookup the symbol and print out any matches we find:
else if(is_prefix(command, "symbol")) {
auto syms = lookup_symbol(args[1]);
for (auto&& s : syms) {
std::cout << s.name << ' ' << to_string(s.type) << " 0x" << std::hex << s.addr << std::endl;
}
}
Testing it out
Fire up your debugger on a simple binary, play around with setting source-level breakpoints. Setting a breakpoint on some foo
and seeing my debugger stop on it was one of the most rewarding moments of this project for me.
Symbol lookup can be tested by adding some functions or global variables to your program and looking up the names of them. Note that if you’re compiling C++ code you’ll need to take name mangling into account as well.
That’s all for this post. Next time I’ll show how to add stack unwinding support to the debugger.
You can find the code for this post here.
via: https://blog.tartanllama.xyz/c++/2017/06/19/writing-a-linux-debugger-source-break/
作者:Simon Brand 译者:译者ID 校对:校对者ID